(45-2) 05 * << * >> * Russian * English * Content * All Issues

Induced dichroism in fiber optical resonators with an embedded optically active element
C.N. Alexeyev 1, E.V. Barshak 1, D.V. Vikulin 1, B.P. Lapin 1, M.A. Yavorsrky 1

V.I. Vernadsky Crimean Federal University, 295000, Simferopol, Russia, Prospekt Vernadskogo 4

 PDF, 1202 kB

DOI: 10.18287/2412-6179-CO-750

Pages: 200-207.

Full text of article: Russian language.

Abstract:
In this paper we have demonstrated the emergence of an effective circular dichroism for the fundamental mode in fiber resonators of loop and ring types with an optically active element embedded into the loop/ring. Changing the parameters of the resonator, the optically active element, or the wavelength of the incoming field allows one to control the value of the effective dichroism and actually, to increase optical activity of the element. It is shown that these resonators can be used as working elements of all-fiber polarizers for the fundamental mode.

Keywords:
fiber loop resonator, fiber ring resonator, circular dichroism.

Citation:
Alexeyev CN, Barshak EV, Vikulin DV, Lapin BP, Yavorsky MA. Induced dichroism in fiber optical resonators with an embedded optically active element. Computer Optics 2021; 45(2): 200-207. DOI: 10.18287/2412-6179-CO-750.

Acknowledgements:
This work was supported by the Council for Grants of the President of the Russian Federation (grant MK-329.2020.2) and by the Development Program 2015-2024 of Vernadsky Crimean Federal University (grant ВГ 02/2020).

References:

  1. Kizel VA, Burkov VI. Gyrotropy of crystals [In Russian]. Moscow: "Nauka" Publisher; 1980.
  2. Fedorov FI. Optics of anisotropic media [In Russian]. Minsk: "Academia Nauk BSSR" Publisher; 1958.
  3. Krinchik GS. Physics of magnetic phenomena [In Russian]. Moscow: "Izdatelstvo Moskovskogo Universiteta" Publisher; 1976.
  4. Lakhtakia A, Messier R. Sculptured thin films: nanoengineered morphology and optics. Bellingham, WA: SPIE Press; 2005.
  5. Park HS, Park J, Son J, Kim Y, Cho H, Shin J, Jeon W, Min B. A general recipe for nondispersive optical activity in bilayer chiral metamaterials. Adv Opt Mater 2019;7: 1801729. DOI: 10.1002/adom.201801729.
  6. Xie F, Wu W, Ren M, Cai W, Xu J. Lattice collective interaction engineered optical activity in metamaterials. Adv Opt Mater 2020;8: 1901435. DOI: 10.1002/adom.201901435.
  7. Rodrigues SP, Lan S, Kang L, Cui Y, Panuski PW, Wang S, Urbas AM, Cai W. Intensity-dependent modulation of optically active signals in a chiral metamaterial. Nat Commun 2017; 8: 14602. DOI: 10.1038/ncomms14602.
  8. Verbiest T, Koeckelberghs G, Champagne B. Feature issue introduction: chirality in optics. Opt Mater Express 2014; 4: 2663-2665. DOI: 10.1364/OME.4.002663.
  9. Yoshino T. Theory for the Faraday effect in optical fiber. J Opt Soc Am B 2005;22: 1856-1860. DOI: 10.1364/JOSAB.22.001856.
  10. Ulrich R, Simon A. Polarization optics of twisted single-mode fibres. Appl Opt 1979;18: 2241-2251.
  11. Barshak EV, Alexeyev CN, Lapin BP, Yavorsky MA. Twisted anisotropic fibers for robust orbital-angular-momentum-based information transmission. Phys. Rev. A 2015; 91: 033833. DOI: 10.1103/PhysRevA.91.033833.
  12. Xi XM, Weiss T, Wong GKL, Biancalana F, Barnett SM, Padgett MJ, Russell PStJ. Optical activity in twisted solid-core photonic crystal fibers. Phys Rev Lett 2013;110: 143903. DOI: 10.1103/PhysRevLett.110.143903.
  13. Russell PSJ, Beravat R, Wong GKL. Helically twisted photonic crystal fibres. Philos Trans Royal Soc A 2017;375: 20150440. DOI: 10.1098/rsta.2015.0440.
  14. Weiss T, Wong GKL, Biancalana F, Barnett SM, Xi XM, Russell PStJ. Topological Zeeman effect and circular birefringence in twisted photonic crystal fibers. J Opt Soc Am B 2013; 30: 2921-2927. DOI: 10.1364/JOSAB.30.002921.
  15. Chen L, Zhang W-G, Yan T-Y, Wang L, Sieg J, Wang B, Zhou Q, Zhang L-Y. Photonic crystal fiber polarization rotator based on the topological Zeeman effect. Opt Lett 2015;40: 3448-3451. DOI: 10.1364/OL.40.003448.
  16. Alexeyev CN, Lapin BP, Milione G, Yavorsky MA. Optical activity in multihelicoidal optical fibers. Phys Rev A 2015;92: 033809. DOI: 10.1103/PhysRevA.92.033809.
  17. Alexeyev CN, Barshak EV, Lapin BP, Yavorsky MA. Reciprocal optical activity in multihelicoidal optical fibers. Phys Rev A 2018;98: 023824. DOI: 10.1103/PhysRevA.98.023824.
  18. Alexeyev CN, Alexeyeva MC, Lapin BP, Vikulin DV, Yavorsky MA. Polarization plane rotation for higher order modes in twisted optical fibers with discrete rotationally symmetric core. J Phys Conf Ser 2018;1124: 051006. DOI: 10.1088/1742-6596/1124/5/051006.
  19. Chiao RY, Wu Y-S. Manifestation of Berry’s topological phase for the photon. Phys Rev Lett 1986;57: 933-936. DOI: 10.1103/PhysRevLett.57.933.
  20. Tomita A, Chiao RY. Observation of Berry’s topological phase by use of an optical fibre. Phys Rev Lett 1986;57: 937-940. DOI: 10.1103/PhysRevLett.57.937.
  21. Alekseyev K.N., Yavorsky M.A. Propagation of optical vortices in coiled weakly guiding optical fibers. Opt Spectrosc 2007; 102: 754-759. DOI: 10.1134/S0030400X07050177.
  22. Li P, Fan X, Wu D, Liu B, Li Y, Zhao J. Self-accelerated optical activity in free space induced by the Gouy phase. Photon Res 2020;8: 475-481. DOI: 10.1364/PRJ.380675.
  23. Wong GKL, Xi XM, Frosz MH, Russell PSJ. Enhanced optical activity and circular dichroism in twisted photonic crystal fiber. Opt Lett 2015;40: 4639-4642. DOI: 10.1364/OL.40.004639.
  24. Alexeyev CN, Lapin BP, Yavorsky MA. Resonance optical activity in multihelicoidal optical fibers. Opt Lett 2016;41: 962-965. DOI: 10.1364/OL.41.000962.
  25. Golub I. Berry’s phase amplification by a ring resonator. Opt Lett 2006;31: 3342-3344. DOI: 10.1364/OL.31.003342.
  26. Golub I, Audet T, Imobekhai L. Observation of Berry’s phase amplification by a ring resonator. J Opt Soc Am B 2010;27: 1698-1700. DOI: 10.1364/JOSAB.27.001698.
  27. Stokes LF, Chodorow M, Shaw HJ. All-single-mode fiber resonator. Opt Lett 1982;7: 288-230. DOI: 10.1364/OL.7.000288.
  28. Zhang F, Lit JWY. Direct-coupling single-mode fiber ring resonator. J Opt Soc Am A 1988;5: 1347-1355. DOI: 10.1364/JOSAA.5.001347.
  29. Yu W, Xu Z, Changlun H, Jian B, Guoguang Y. A tunable all-fiber filter based on microfiber loop resonator. Appl Phys Lett 2008;92: 191112. DOI: 10.1063/1.2926672.
  30. Liu D, Zhang C, Liang D, Dai D. Submicron-resonator-based add-drop optical filter with an ultra-large free spectral range. Opt Express 2019;27: 416-422. DOI: 10.1364/OE.27.000416.
  31. Madamopoulos N. Fiber loop mirror based single-platform multifunctional Michelson–Gires–Tournois filter. Opt Commun 2019;436: 134-142.
  32. Mistry A, Hammood M, Shoman H, Chrostowski L, Jaeger NAF. Bandwidth-tunable, FSR-free, microring-based, SOI filter with integrated contra-directional couplers. Opt Lett 2018;43: 6041-6044. DOI: 10.1364/OL.43.006041.
  33. Talataisong W, Ismaeel R, Brambilla G. A review of microfiber-based temperature sensors. Sensors 2018;18: 461. DOI: 10.3390/s18020461.
  34. Linslal CL, Syam Mohan PM, Halder A, Gangopadhyay TK. Analysis and modeling of an optical fiber loop resonator and an evanescent field absorption sensor for the application for chemical detection. Sens Actuator A Phys 2013;194: 160-168. DOI: 10.1016/j.sna.2013.01.021.
  35. Xu F, Brambilla G. Demonstration of a refractometric sensor based on optical microfiber coil resonator. Appl Phys Lett 2008;92: 101126. DOI: 10.1063/1.2898211.
  36. Wang Q, Feng X, Zhao Y, Li J, Hu H. Research on fiber loop coupled resonator slow light and displacement sensing technology. Sens Actuator A Phys 2015;233: 472-479. DOI: 10.1016/j.sna.2015.08.004.
  37. Yuan G, Peng F, Guan L, Peng Z, Wang Z. Autler–Townes splitting biosensing based on a nonuniform photonic crystal waveguide with feedback loop. Appl Opt 2018;57: 6976-6981. DOI: 10.1364/AO.57.006976.
  38. Fülöp A, Mazur M, Lorences-Riesgo A, Helgason ÓB, Wang P-H, Xuan Y, Leaird DE, Qi M, Andrekson PA, Weiner AM, Torres-Company V. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nat Commun 2018;9: 1598. DOI: 10.1038/s41467-018-04046-6.
  39. Butt MA, Khonina SN, Kazanskiy NL. Device performance of standard strip, slot and hybrid plasmonic μ-ring resonator: a comparative study. Waves in Random and Complex Media 2020;1-10. DOI: 10.1080/17455030.2020.1744769.
  40. Butt MA, Khonina SN, Kazanskiy NL. Sensitivity enhancement of silicon strip waveguide ring resonator by incorporating a thin metal film. IEEE Sens J 2020;20: 1355-1362. DOI: 10.1109/JSEN.2019.2944391.
  41. Alexeyev CN, Milodan AV, Alexeyeva MC, Yavorsky MA. Inversion of the topological charge of optical vortices in a coil fiber resonator. Opt Lett 2016;41: 1526-1529. DOI: 10.1364/OL.41.001526.
  42. Alexeyev CN, Barshak EV, Lapin BP, Yavorsky MA. Transmission of optical vortices through fiber loop resonators. Opt Lett 2019;44: 4044-4047. DOI: 10.1364/OL.44.004044.
  43. Zheng J, Yang A, Wang T, Zeng X, Cao N, Liu M, Pang F, Wang T. Wavelength-switchable vortex beams based on a polarization-dependent microknot resonator. Photon Res 2018;6: 396-402. DOI: 10.1364/PRJ.6.000396.
  44. Alexeyev CN, Barshak EV, Lapin BP, Yavorsky MA. Topological resonances, super-efficient OAM control and spin-orbit interaction enhancement in fiber loop resonators. Phys Rev A 2020;101: 063801. DOI: 10.1103/PhysRevA.101.063801.
  45. Sumetsky M, Dulashko Y, Fini JM, Hale A, DiGiovanni DJ. The microfiber loop resonator: Theory, experiment, and application. J Light Technol 2006;24: 242-250. DOI: 10.1109/JLT.2005.861127.
  46. Yariv A. Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron Lett 2000;36: 321-322. DOI: 10.1049/el:20000340.
  47. Snyder AW, Love JD. Optical waveguide theory. London, New York: Chapman and Hall; 1985.
  48. Wu X, Fan T, Eftekhar AA, Adibi A. High-Q microresonators integrated with microheaters on a 3C-SiC-on-insulator platform. Opt Lett 2019;44: 4941-4944. DOI: 10.1364/OL.44.004941.
  49. Vollmer F, Fischer P. Ring-resonator-based frequency-domain optical activity measurements of a chiral liquid. Opt Lett 2006;31: 453-455. DOI: 10.1364/OL.31.000453.
  50. Decker M, Zhao R, Soukoulis CM, Linden S, Wegener M. Twisted split-ring-resonator photonic metamaterial with huge optical activity. Opt Lett 2010;35: 1593-1595. DOI: 10.1364/OL.35.001593.
  51. Qu Y, Huang L, Wang L, Zhang Z. Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure. Opt Express 2017;25: 5480-5487. DOI: 10.1364/OE.25.005480.
  52. Hu L, Dai H, Xi F, Tang Y, Cheng F. Enhanced circular dichroism in hybrid graphene–metal metamaterials at the near-infrared region. Opt Commun 2020;473: 125947. DOI: 10.1016/j.optcom.2020.125947.
  53. Doskolovich LL, Bezus EA, Bykov DA, Belotelov VI, Zvezdin AK. Resonant magneto-optical effects in diffraction gratings with a magnetized layer [In Russian]. Computer Optics 2007;31: 4-8.
  54. Plum E, Fedotov VA, Zheludev NI. Extrinsic electromagnetic chirality in metamaterials. J Opt A–Pure Appl Opt 2009;11: 074009. DOI: 10.1088/1464-4258/11/7/074009.
  55. Schmidt MA, Wondraczek L, Lee HW, Granzow N, Da N, Russell PSJ. Complex Faraday rotation in microstructured magneto-optical fiber waveguides. Adv Mater 2011;23: 2681-2688. DOI: 10.1002/adma.201100364.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20