(45-2) 06 * << * >> * Russian * English * Content * All Issues

Simulation of laser light focusing with two-layer dielectric microcyl-inders
A.A. Savelyeva 1,2, E.S. Kozlova 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1311 kB

DOI: 10.18287/2412-6179-CO-820

Pages: 208-213.

Full text of article: Russian language.

Abstract:
Focusing of a linearly polarized laser beam of wavelength 633 nm with two-layer dielectric microcylinders of a circular cross-section and 2-um diameter was simulated using a finite-difference time-domain (FDTD) method, implemented using the FullWAVE software. It was shown that using a cladding whose refractive index (1.8 or 1.9) is higher than that of the core (1.45), it is possible to increase the depth of focus by a factor of 2.57 multiplied by the incident wavelength and shift the focal spot position along the optical axis away from the microcylinder boundary. It was also shown that parameters of the microcylinder could be chosen in such a way that a tighter focal spot was generated, with its full width at half maximum of intensity being 2.27 of the incident wavelength. The intensity at this focus was shown to be 1.4 times higher than that at the focus generated with a homogeneous microcylinder.

Keywords:
two-layer dielectric microcylinder, photonic nanojet, tight focusing, FDTD-method.

Citation:
Savelyeva AA, Kozlova ES. Simulation of laser light focusing with two-layer dielectric microcylinders. Computer Optics 2021; 45(2): 208-213. DOI: 10.18287/2412-6179-CO-820.

Acknowledgements:
This work was supported by the Council for Grants of the President of the Russian Federation (grant MK-329.2020.2) and by the Development Program 2015-2024 of Vernadsky Crimean Federal University (grant ВГ 02/2020).

References:

  1. Zhou S. Effects of light polarization in photonic. Opt Quantum Electron 2019; 51: 112.
  2. Kotlyar VV, Stafeev SS, Kovalev AA. Sharp focusing of a light field with polarization and phase singularities of an arbitrary order. Computer Optics 2019; 43(3): 337-346. DOI: 10.18287/2412-6179-2019-43-3-337-346.
  3. Khonina SN, Ustinov AV, Volotovsky SG. Comparison of focusing of short pulses in the Debye approximation. Computer Optics 2018; 42(3): 432-446. DOI: 10.18287/2412-6179-2018-42-3-432-446.
  4. Doskolovich LL, Bezus EA, Bykov DA, Skidanov RV, Kazanskiy NL. Calculation of a diffractive lens having a fixed focal position at several prescribed wavelengths. Computer Optics 2019; 43(6): 946-955. DOI: 10.18287/2412-6179-2019-43-6-946-955.
  5. Kallepalli DL, Alshehri AM, Marquez DT, Andrzejewski L, Scaiano JC, Bhardwaj R. Ultra-high density optical data storage in common transparent plastics. Sci Rep 2016; 6: 26163.
  6. Chenga, S, XiabT, Liua M, Xua S, Gaoa S, Zhangc G, Taob S. Optical manipulation of microparticles with the momentum flux transverse to the optical axis. Opt Laser Technol 2019; 113: 266-272.
  7. Zhen Z, Huang Y, Feng Y, Shen Y, Li Z. An ultranarrow photonic nanojet formed by an engineered two-layer microcylinder of high refractive-index materials. Opt Express 2019; 27(6): 9178-9188.
  8. Darafsheh A, Bollinger D. Photonic nanojet properties of dielectric. Proc SPIE 2020; 10106: 101061U.
  9. Kozlova ES, Kotlyar VV. Focusing of laser light by circular microcylinders with a metal shell. Procedia Engineering 2017; 201: 36-41. DOI: 10.1016/j.proeng.2017.09.648.
  10. Xing H, Zhow W, Wu Y. Side-lobes-controlled photonic nanojet with a horizontal graded-index microcylinder. Opt Lett 2018; 43(17): 4292-4295.
  11. Liu C-Y, Lin F-C. Geometric effect on photonic nanojet generated by dielectric microcylinders with non-cylindrical cross-sections. Opt Commun 2016; 380: 287-296.
  12. Liu C-Y, Hsiao K-L. Direct imaging of optimal photonic nanojets from core-shell microcylinders. Opt Lett 2015; 40(22): 5303-5306.
  13. Cao Y, Liu Z, Minin OV, Minin IV. Deep subwavelength-scale light focusing and confinement in nanohole-structured mesoscale dielectric spheres. Nanomaterials 2019; 9(2): 186.
  14. Wu M, Chen R, Ling J, Chen Z, Chen X, Ji R, Hong M. Creation of a longitudinally polarized photonic nanojet via an engineered microsphere. Opt Lett 2017; 42(7): 1444-1447.
  15. Ruiz CM, Simpson JJ. Detection of embedded ultra-subwavelength-thin dielectric features using elongated photonic nanojets. Opt Express 2010; 18(16): 16805-16812.
  16. Liu C-Y, Li C-C. Photonic nanojet induced modes generated by a chain of dielectric microdisks. Optik 2016; 127: 267-273.
  17. Liu C, Minin OV, Minin IV. Periodical focusing mode achieved through a chain of mesoscale dielectric particles with a refractive index near unity. Opt Commun 2019; 434: 110-117.
  18. Astratov VN, Darafsheh A, Kerr MD, Allen KW, Fried NM. Focusing microprobes based on integrated chains of microspheres. PIERS Online 2010; 6(8): 793-797.
  19. Kotlyar VV, Stafeev SS, Feldman AY. Photonic nanojets formed by square microsteps. Computer Optics 2014; 38(1): 72-80. DOI: 10.18287/0134-2452-2014-38-1-72-80.
  20. Huang Y, Zhen Z, Shen Z, Min C, Veronis G. Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm. Opt Express 2019; 27(2): 1310-1325.
  21. Zhang H. Enhanced subwavelength photonic nanojet focusing via a graded-index round-head microcylinder. Optik 2020; 203: 163973.
  22. Kozlova ES, Kotlyar VV, Savelyeva AA. Comparative simulation of linear polarized light focusing by dielectric mycrocylinders with metallic coating. J Phys Conf Ser 2019; 1096: 012102. DOI: 10.1088/1742-6596/1096/1/012102.
  23. Julien P, Jerome M, Davy G, Jean-Louis B, Jerome P. Detecting a zeptogram of pyridine with a hybrid plasmonic–photonic nanosensor. ACS Sens 2019; 4(3): 586-594.
  24. Tenne R, Rossman U, Rephael B, Israel Y, Krupinski-Ptaszek A, Lapkiewicz R, Silberberg Y, Oron D. Super resolution enhancement by quantum image scanning microscopy. Nat Photonics 2019; 13: 116-122.
  25. Wei J, Zhang K, Wei T, Wang Y, wu Y, Xiao M. High-speed maskless nanolithography with visible light based on photothermal localization. Sci Rep 2017; 7: 43892.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20