(45-2) 07 * << * >> * Russian * English * Content * All Issues

The investigation of the features of focusing vortex super-Gaussian beams with a variable-height diffractive axicon
D.A. Savelyev 1,2

Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34,
IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151

 PDF, 2618 kB

DOI: 10.18287/2412-6179-CO-862

Pages: 214-221.

Full text of article: Russian language.

Spatial intensity distributions of the Laguerre-superGauss modes (1,0) as well as a super-Gaussian beam with radial and circular polarization were investigated versus changes in the height of a diffractive axicon. The height of the relief of the optical element varied from 0.25λ to 3λ. The modeling by a finite-difference time-domain method showed that variations in the height of the diffractive axicon significantly affect the diffraction pattern in the near field of the axicon. The smallest focal spot size for a super-Gaussian beam was obtained for radial polarization at a height equal to two wavelengths. The minimum size of the focal spot for the Laguerre-superGauss mode (1,0) was obtained for circular "–" polarization with an element height equal to a quarter of the wavelength.

sharp focusing, FDTD, super-Gaussian beam, Laguerre-super Gauss modes (1,0), axicon.

Savelyev DA. The investigation of the features of focusing vortex super-Gaussian beams with a variable-height diffractive axicon. Computer Optics 2021; 45(2): 214-221. DOI: 10.18287/2412-6179-CO-862.

This work was supported by the Russian Science Foundation under project No. 20-72-00051 (Sections "The investigation of the diffraction of a super-Gaussian beam with a varying axicon height", "The investigation of the diffraction of Laguerre-super-Gauss modes (1.0) with a varying axicon height", and "Conclusion"), the RF Ministry of Science and Higher Education, within government project No. 0777-2020-0017  (Section "Passing of super-Gaussian beams  through a binary diffractive axicon"), and within the government project 007-GZ/Ch3363/26 of FSRC "Crystallography and Photonics" RAS (Section "Introduction").


  1. Khonina SN, Savelyev DA, Pustovoĭ IA, Serafimovich PG. Diffraction at binary microaxicons in the near field. J Opt Technol 2012; 79(10): 626-631. DOI: 10.1364/JOT.79.000626.
  2. McLeod JH. The axicon: a new type of optical element. J Opt Soc Am 1954; 44(8): 592-597. DOI: 10.1364/JOSA.44.000592.
  3. Khonina SN, Ustinov AV, Porfirev AP. Dynamic focal shift and extending depth of focus based on the masking of the illuminating beam and using an adjustable axicon. J Opt Soc Am A 2019; 36(6): 1039-1047. DOI: 10.1364/JOSAA.36.001039.
  4. Liu X, Cai X, Chang S, Grover CP. Cemented doublet lens with an extended focal depth. Opt Express 2005; 13(2): 552-557. DOI: 10.1364/OPEX.13.000552.
  5. Fortin M, Piché M, Borra EF. Optical tests with Bessel beam interferometry. Opt Express 2004; 12(24): 5887-5895. DOI: 10.1364/OPEX.12.005887.
  6. Wang K, Zeng L, Yin C. Influence of the incident wave-front on intensity distribution of the nondiffracting beam used in large-scale measurement. Opt Commun 2003; 216(1-3): 99-103. DOI: 10.1016/S0030-4018(02)02307-6.
  7. Shao B, Esener SC, Nascimento JM, Berns MW, Botvinick EL, Ozkan M. Size tunable three-dimensional annular laser trap based on axicons. Opt Lett 2006; 31(22): 3375-3377. DOI: 10.1364/OL.31.003375.
  8. Shao B, Esener SC, Nascimento JM, Botvinick EL, Berns MW. Dynamically adjustable annular laser trapping based on axicons. Appl Opt 2006; 45(25): 6421-6428. DOI: 10.1364/AO.45.006421.
  9. Saadati-Sharafeh F, Borhanifar A, Porfirev AP, Amiri P, Akhlaghi EA, Khonina SN, Azizian-Kalandaragh Y. The superposition of the Bessel and mirrored Bessel beams and investigation of their self-healing characteristic. Optik 2020; 208: 164057. DOI: 10.1016/j.ijleo.2019.164057.
  10. Khonina S, Degtyarev S, Savelyev D, Ustinov A. Focused, evanescent, hollow, and collimated beams formed by microaxicons with different conical angles. Opt Express 2017; 25(16): 19052-19064. DOI: 10.1364/OE.25.019052.
  11. Kalosha VP, Golub I. Toward the subdiffraction focusing limit of optical superresolution. Opt Lett 2007; 32(24): 3540-3542. DOI: 10.1364/OL.32.003540.
  12. Kharitonov SI, Khonina SN, Volotovskiy SG, Kazanskiy NL. Caustics of the vortex beams generated by vortex lenses and vortex axicons. J Opt Soc Am A 2020; 37(3): 476-482. DOI: 10.1364/JOSAA.382361.
  13. Soifer VA, Kharitonov SI, Khonina SN, Strelkov YS, Porfirev AP. Spiral caustics of vortex beams. Photonics 2021; 8(1): 24. DOI: 10.3390/photonics8010024.
  14. Soifer VA, Kharitonov SI, Khonina SN, Volotovsky SG. Caustics of vortex optical beams. Doklady Physics 2019; 64(7): 276-279. DOI: 10.1134/S102833581907005X.
  15. Khonina SN, Degtyarev SA. Analysis of the formation of a longitudinally polarized optical needle by a lens and axicon under tightly focused conditions. J Opt Technol 2016; 83(4): 197-205. DOI: 10.1364/JOT.83.000197.
  16. Vahimaa P, Kettunen V, Kuittinen M, Turunen J, Friberg AT. Electromagnetic analysis of nonparaxial Bessel beams generated by diffractive axicons. J Opt Soc Am A 1997; 14(8): 1817-1824. DOI: 10.1364/JOSAA.14.001817.
  17. Degtyarev S, Savelyev D, Khonina S, Kazanskiy N. Metasurfaces with continuous ridges for inverse energy flux generation. Opt Express 2019; 27(11): 15129-15135. DOI: 10.1364/OE.27.015129.
  18. Ustinov AV, Khonina SN. Analysis of laser beam diffraction by axicon with the numerical aperture above limiting. Computer Optics 2014; 38(2): 213-222. DOI: 10.18287/0134-2452-2014-38-2-213-222.
  19. Lalanne P, Lemercier-Lalanne D. On the effective medium theory of subwavelength periodic structures. J Mod Opt 1996; 43(10): 2063-2085. DOI: 10.1080/09500349608232871.
  20. Khonina SN, Savelyev DA. High-aperture binary axicons for the formation of the longitudinal electric field component on the optical axis for linear and circular polarizations of the illuminating beam. J Exp Theor Phys 2013; 117(4): 623-630. DOI: 10.1134/S1063776113120157.
  21. Pryamikov A, Alagashev G, Falkovich G, Turitsyn S. Light transport and vortex-supported wave-guiding in micro-structured optical fibres. Sci Rep 2020; 10(1): 1-12. DOI: 10.1038/s41598-020-59508-z.
  22. Li S, Pan X, Ren Y, Liu H, Yu S, Jing J. Deterministic generation of orbital-angular-momentum multiplexed tripartite entanglement. Phys Rev Lett 2020; 124(8): 083605. DOI: 10.1103/PhysRevLett.124.083605.
  23. Li S, Li X, Zhang L, Wang G, Wang L, Liu M, Zeng C, Wang L, Sun Q, Zhao W, Zhang W. Efficient optical angular momentum manipulation for compact multiplexing and demultiplexing using a dielectric metasurface. Adv Opt Mater 2020; 8(8): 1901666. DOI: 10.1002/adom.201901666.
  24. Khonina SN, Karpeev SV, Alferov SV, Soifer VA. Generation of cylindrical vector beams of high orders using uniaxial crystals. J Opt 2015; 17(6): 065001. DOI: 10.1088/2040-8978/17/6/065001.
  25. Khonina SN, Savelyev DA, Kazanskiy NL. Analysis of polarisation states at sharp focusing. Optik 2016; 127(6): 3372-3378. DOI: 10.1016/j.ijleo.2015.12.108.
  26. Khonina SN, Alferov SV, Karpeev SV. Strengthening the longitudinal component of the sharply focused electric field by means of higher-order laser beams. Opt Lett 2013; 38(17): 3223-3226. DOI: 10.1364/OL.38.003223.
  27. Palma C, Bagini V. Propagation of super-Gaussian beams. Opt Commun 1994; 111(1-2): 6-10. DOI: 10.1016/0030-4018(94)90130-9.
  28. Ding X, Ren Y, Lu R. Shaping super-Gaussian beam through digital micro-mirror device. Sci China Phys Mech 2015; 58(3): 1-6. DOI: 10.1007/s11433-014-5499-9.
  29. Savelyev DA, Khonina SN. Characteristics of sharp focusing of vortex Laguerre-Gaussian beams. Computer Optics 2015; 39(5): 654-662. DOI: 10.18287/0134-2452-2015-39-5-654-662.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20