(45-2) 11 * << * >> * Russian * English * Content * All Issues

Indication of long-term changes in the vegetation of abandoned agricultural lands for the forest-steppe zone using NDVI time series
E.A. Terekhin 1

Belgorod State University, Belgorod, Russia

 PDF, 1557 kB

DOI: 10.18287/2412-6179-CO-797

Pages: 245-252.

Full text of article: Russian language.

Abstract:
The paper presents results of the analysis of long-term changes in the vegetation cover of abandoned agricultural lands in the forest-steppe zone of the Central Chernozem Region using time series of the Normalized Difference Vegetation Index (NDVI), which are measured using MOD13Q1 data. The vegetation index dynamics linked with the proportion of forest communities formed on the abandoned agricultural lands is investigated. The index values for the period of mid-August are the most informative for analyzing the share of forest communities growing on the abandoned agricultural land. Abandoned agricultural lands with coniferous forests have a higher correlation with NDVI than fallows with deciduous species. In the period 2000-2018, for all types of abandoned arable lands, the presence of a positive statistically significant trend component of the vegetation index long-term series is established. Using a slope angle coefficient of the NDVI trend line, a spatio-temporal analysis of the rate of formation of forest stands in the forest-steppe fallows at the beginning of the XXI century was carried out. Features of this process are studied.

Keywords:
abandoned agricultural lands, spectral response, image processing, forest-steppe, long-term changes, MOD13Q1.

Citation:
Terekhin EA. Indication of long-term changes in the vegetation of abandoned agricultural lands for the forest-steppe zone using NDVI time series. Computer Optics 2021; 45(2): 245-252. DOI: 10.18287/2412-6179-CO-797.

References:

  1. Novikova LA, Polozova MO. Restoration of vegetation on the abandoned arable lands of the "Ostrovtsovskaya forest-steppe" [In Russian] Vestnik Orenburgskogo Gosudarstvennogo Universiteta 2009; 6(112): 286-290.
  2. Lyuri DI, Goryachkin SV, Karavayeva NA, Denisenko YEA, Nefedova TG. Dynamics of agricultural lands of Russia in XX century and postagrogenic restoration of vegetation and soils [In Russian]. Moscow: "GEOS" Publisher; 2010.
  3. Prishchepov AV, Radeloff VC, Dubinin M, Alcantara C. The effect of Landsat ETM/ETM + image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sens Environ 2012; 126: 195-209. DOI: 10.1016/j.rse.2012.08.017.
  4. Denisova AYu, Egorova AA, Sergeev VV, Kavelenova LM. Requirements for multispectral remote sensing data used for the detection of arable land colonization by tree and shrubbery vegetation. Computer Optics 2019; 43(5): 846-856. DOI: 10.18287/2412-6179-2019-43-5-846-856.
  5. Alcantara C, Kuemmerle T, Baumann M, Bragina EV, Griffiths P, Hostert P, Knorn J, Müller D, Prishchepov AV, Schierhorn F, Sieber A, Radeloff VC. Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data. Environ Res Lett 2013; 8(3): 035035. DOI: 10.1088/1748-9326/8/3/035035.
  6. Terekhin EA. Recognition of abandoned agricultural lands using seasonal NDVI values. Computer Optics 2017; 41(5): 719-725. DOI: 10.18287/2412-6179-2017-41-5-719-725.
  7. Bartalev SA, Egorov VA, Lupyan EA, Plotnikov DE, Uvarov IA. Recognition of arable lands using multi-annual satellite data from spectroradiometer MODIS and locally adaptive supervised classification [In Russian]. Computer Optics 2011; 35(1): 103-116.
  8. Terekhov AG, Vitkovskaya IS, Abaev NN, Dolgikh S.A. Long term trends in vegetation in Tien-Shan and Dzungarian Alatau from eMODIS NDVI C6 data (2002–2019) [In Russian]. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 2019; 16(6): 133-142. DOI: 10.21046/2070-7401-2019-16-6-133-142.
  9. Yin H, Prishchepov AV, Kuemmerle T, Bleyhl B, Buchner J, Radeloff VC. Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sens Environ 2018; 210: 12-24. DOI: 10.1016/j.rse.2018.02.050.
  10. Terekhin EA, Chendev YuG. Estimation of forest cover changes during modern period in the south of the Central Russian Upland using multiyear remote sensing data [In Russian]. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 2018; 15(3): 114-126. DOI: 10.21046/2070-7401-2018-15-3-114-126.
  11. Yelsakov VV, Shchanov VM. Current changes in vegetation cover of Timan tundra reindeer pastures from analysis of satellite data [In Russian]. Sovremennyye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 2019; 16(2): 128-142. DOI: 10.21046/2070-7401-2019-16-2-128-142.
  12. Didan K. MOD13Q1 v006. MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. DOI: 10.5067/MODIS/MOD13Q1.006. Source: <https://lpdaac.usgs.gov/products/mod13q1v006/>.
  13. Justice CO, Townshend JRG, Vermote EF, Masuoka E, Wolfe RE, Saleous N, Roy DP, Morisette JT. An overview of MODIS Land data processing and product status. Remote Sens Environ 2002; 83(1): 3-15. DOI: 10.1016/S0034-4257(02)00084-6.
  14. Valor E, Caselles V. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sens Environ 1996; 57(3): 167-184.
  15. Robinson PN, Allred WB, Jones OM, Moreno A, Kimball SJ, Naugle ED, Erickson AT, Richardson DA. A dynamic Landsat derived normalized difference vegetation index (NDVI) product for the conterminous United States. Remote Sens 2017; 9(8): 863. DOI: 10.3390/rs9080863.
  16. Jamali S, Seaquist J, Eklundh L, Ardö J. Automated mapping of vegetation trends with polynomials using NDVI imagery over the Sahel. Remote Sens Environ 2014; 141: 79-89. DOI: 10.1016/j.rse.2013.10.019.
  17. Fiziko-geograficheskoye rayonirovaniye tsentral'nykh chernozemnykh oblastey [In Russian]. Voronezh: “Izd-vo Voronezhskogo universiteta” Publisher; 1961.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20