(45-5) 11 * << * >> * Russian * English * Content * All Issues
  
Automated combination of optical coherence tomography images and fundus images
  A.D. Fida 1, A.V. Gaidel 1,2, N.S. Demin 1,2, N.Yu. Ilyasova 1,2, E.A. Zamytskiy 3
1 Samara National Research University, Moskovskoye Shosse 34, 443086, Samara, Russia,
    2 IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
     443001, Samara, Russia, Molodogvardeyskaya 151,
    3 Samara Regional Clinical Ophthalmological Hospital named after T.I. Eroshevsky,
  443066, Samara, Russia, Zaporozhskaya 26
 PDF, 4348 kB
  PDF, 4348 kB
DOI: 10.18287/2412-6179-CO-892
Pages: 721-727.
Full text of article: Russian language.
 
Abstract:
We discuss approaches to  combining multimodal multidimensional images, namely, three-dimensional optical  coherence tomography (OCT) data and two-dimensional color images of the fundus.  Registration of these two modalities can help to adjust the position of the  obtained OCT images on the retina. Some existing approaches to matching fundus  images are based on finding key points that are considered invariant to affine  transformations and are common to the two images. However, errors in the  identification of such points can lead to registration errors. There are also  methods for iterative adjustment of conversion parameters, but they are based  on some manual settings. In this paper, we propose a method based on a full or  partial search of possible combinations of the OCT image transformation to find the best approximation of the true  transformation. The best approximation is determined using a measure of  comparison of preprocessed image pixels. Further, the obtained transformations  are compared with the available true transformations to assess the quality of  the algorithm. The structure of the work includes: pre-processing of OCT and  fundus images with the extraction of blood vessels, random search or grid  search over possible transformation parameters (shift, rotation and scaling),  and evaluation of the quality of the algorithm.
Keywords:
image processing,  optical coherence tomography, fundus, image matching.
Citation:
  Fida AD, Gaidel AV, Demin NS, Ilyasova NY, Zamytskiy EA. Automated combination of optical coherence tomography images and fundus images. Computer Optics 2021; 45(5): 721-727. DOI: 10.18287/2412-6179-CO-892.
Acknowledgements:
  This  work was financially supported by the Russian Foundation for Basic Research  under grant # 19-29-01135 and the RF Ministry of Science and Higher Education  under a government project of the FSRC “Crystallography and Photonics” RAS.
References:
  - Dedov II, Shestakova  MV, Galstyan GP. The prevalence of type 2 diabetes in the adult population of Russia (NATION  study) [In Russian]. Diabetes Mellitus 2016; 19(2): 104-112.
 
- Amirov AN, Abdulaeva  EA, Minkhuzina EL Diabetic macular edema. epidemiology, pathogenesis,  diagnosis, clinical features, treatment [In Russian]. Kazan Medical Journal 2015; 96(1): 70-74.
 
- Tsujimoto T, Kajio H. Four-year screening interval  and vision-threatening retinopathy in type 2 diabetes patients with good  glycemic control. Mayo Clinic Proceedings 2021; 96(2): 322-331. 
 
- Tan GS, Cheung N, Simo R. Diabetic macular edema.  Lancet Diabetes Endocrinol 2017; 5: 143-155.
 
- Hurley B. Therapeutic  revolution in the management of diabetic retinopathy. Can J Ophthalmol 2017,  52(1): 1-2.
 
- Barry  GP, Tauber KA, Greenberg S, Lajoie J, Afroze F, Oechsner H, Finucane E,  Binenbaum G. A comparison of respiratory outcomes after treating retinopathy of  prematurity with laser photocoagulation or intravitreal bevacizumab. Ophthalmol  Retina 2020, 4(12): 1202-1208.
 
- Kotsur TV, Izmailov   AS. The effectiveness of laser  coagulation in the macula and high-density microphotocoagulation in the  treatment of diabetic maculopathy. Ophthalmological Statements 2016, 9(4):  43-45.
 
- Zamytsky EA, Zolotarev AV, Karlova EV, Zamytsky  PA. Analysis of the coagulates intensity in laser treatment of diabetic macular  edema in a NAVILAS robotic laser system. Saratov  Journal of Medical Scientific Research 2017, 13(2): 375-378.
 
- Ober MD. Time required for navigated macular laser  photocoagulation treatment with the Navilas®. Graefes Arch Clin Exp  Ophthalmol 2013; 251(4): 1049-1053.
 
- Vergmann AS, Nguyen TT, Torp TL, Kawasaki R, Wong  TY, Peto T, Grauslund J. Efficacy and side effects of individualized panretinal  photocoagulation. Ophthalmol Retina 2020; 4(6): 642-644.
 
- Ilyasova NYu, Shirokanev AS, Kupriyanov AV,  Paringer RA. Technology of intellectual feature selection  for a system of automatic formation of a coagulate plan on retina.  Computer Optics 2019; 43(2): 304-315. DOI: 10.18287/2412-6179-2019-43-2-304-315. 
 
- Ilyasova NYu, Paringer RA, Kupriyanov AV. Regions  of interest in a fundus image selection technique using the discriminative  analysis methods. In Book: Chmielewski LJ, Datta A, Kozera R, Wojciechowski K, eds.  Computer vision and graphics (ICCVG 2016). Cham: Springer; 2016: 408-417. DOI: 10.1007/978-3-319-46418-3_36. 
 
- Ilyasova NYu, Shirokanev AS, Paringer RA,  Kupriyanov AV. A modified technique for smart textural feature selection to  extract retinal regions of interest using image pre-processing. J Phys Conf Ser  2018; 1096: 012095. DOI: 10.1088/1742-6596/1096/1/012095. 
 
- Yoo TK, Choi JY, Seo JG. The possibility of the  combination of OCT and fundus images for improving the diagnostic accuracy of  deep learning for age-related macular degeneration: a preliminary experiment.  Med Biol Eng Comput 2019; 57: 677-687. 
 
- Radim K, Pavel T.  Registration of 3D retinal optical coherence tomography data and 2D fundus  images. In Book: Fischer  B, Dawant BM, Lorenz C, eds. Biomedical Image  Registration. Berlin, Heidelberg:  Springer-Verlag; 2010: 72-82.
 
- Zeinab G, Jamshid S, Amin S, Emad F. An efficient  approach for robust multimodal retinal image registration based on UR-SIFT  features and PIIFD descriptors. EURASIP J Image Video Process 2013; 1(25):  1-16.
 
- Golabbakhsh M, Rabbani H. Vessel-based  registration of fundus and optical coherence tomography projection images of  retina using a quadratic registration. IET Image Process 2013; 7(8): 768-776.
 
- Chojnacki W, Szpak ZL, Wadenbäck M. The  equivalence of two definitions of compatible homography matrices. Patt Recogn  Lett 2020; 135: 38-43. 
- Lowe DG. Distinctive image features from  scale-invariant keypoints. Int J Comp Vis 2004; 60: 91-110. 
 
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20