(45-6) 01 * << * >> * Russian * English * Content * All Issues
Transformations of structurally stable states of spiral beams subjected to sector perturbations
A.V. Volyar 1, Ya.E. Akimova 1
1 Physics and Technology Institute (Academic Unit) of V.I. Vernadsky Crimean Federal University,
295007, Russia, Simferopol, Republic of Crimea, Academician Vernadsky 4
PDF, 5556 kB
DOI: 10.18287/2412-6179-CO-1009
Pages: 789-799.
Full text of article: Russian language.
Abstract:
We investigated conditions for the violation of the structural stability of a spiral beam subject to sector perturbations. Based on the method of computer simulation and measurement of mode spectra, we have shown that a spiral vortex beam has a characteristic caustic surface, the intersection of which sharply changes the shape of the Poynting vector streamlines and the total topological charge of the beam. Sector beam perturbation does not almost change the streamline structure up to scale and rotation. We found that perturbation of the beam causes a change in the direction of circulation of streamlines in the region of perturbation, which is caused by the appearance of vortices with negative topological charges. Their contribution to the total energy flow is fractions of a percent. However, such perturbations do not cause changing the OAM in the beam, despite an increase in the number of vortex modes. Nevertheless, the perturbed beam remains only conditionally structurally stable due to the presence of a small fraction of optical currents with opposite circulations.
Keywords:
structural stability, spiral beam, vortex spectrum, optical currents.
Citation:
Volyar AV, Akimova YE. Transformations of structurally stable states of spiral beams subjected to sector perturbations. Computer Optics 2021; 45(6): 789-799. DOI: 10.18287/2412-6179-CO-1009.
Acknowledgements:
This work was supported by the Russian Fund for Basic Research and the Ministry Council of Republic of Crimea (Project No. 20-47-910002) in part of "Basic and symmetrical spiral beams", (Project No. 20-37-90066) in part of "Fine structure of optical currents", (Project No. 20-37-90068, No. 19-29-01233) in part of "Experiment".
References:
- Forbes A. Structured light tailored for purpose. Opt Photonics News 2020; 31(6): 24-31. DOI: 10.1364/OPN.31.6.000024.
- Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl (Print) 2019; 8: 90. DOI: 10.1038/s41377-019-0194-2.
- Forbes A, de Oliveira M, Dennis MR. Structured light. Nat Photonics 2021; 15: 253-262. DOI: 10.1038/s41566-021-00780-4.
- Willner AE. OAM light for communications. Opt Photonics News 2021; 32(6): 34-41. DOI: 10.1364/OPN.32.6.000034.
- Erhard M, Fickler R, Krenn M, Zeilinger A. Twisted photons: New quantum perspectives in high dimensions. Light Sci Appl (Print) 2018; 7: 17146. DOI: 10.1038/lsa.2017.146.
- Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino F. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J Opt 2011; 13(6): 064001. DOI: 10.1088/2040-8978/13/6/064001.
- Rubinsztein-Dunlop H, Forbes A, Berry MV, Dennis MR, Andrews DL, Mansuripur M, Denz C, Alpmann C, Banzer P, Bauer T, Karimi E, Marrucci L, Padgett M, Ritsch-Marte M, Litchinitser NM, Bigelow NP, Rosales-Guzmán C, Belmonte A, Torres JP, Neely TW, Baker M, Gordon R, Stilgoe AB, Romero J, White AG, Fickler R, Willner AE, Xie G, McMorran B, Weiner AM. Roadmap on structured light. J Opt 2017; 19(1): 013001. DOI: 10.1088/2040-8978/19/1/013001.
- Shen Y, Yang X, Naidoo D, Fu X, Forbes A. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser. Optica 2020; 7(7): 820-831. DOI: 10.1364/OPTICA.414397.
- Dennis MR, Alonso MA. Gaussian mode families from systems of rays. J Phys: Photonics 2019; 1(2): 025003. DOI: 10.1088/2515-7647/ab011d.
- Wan Z, Wang Z, Yang X, Chen Y, Fu X. Digitally tailoring arbitrary structured light of generalized ray-wave duality. Opt Express 2020; 28(21): 31043-31056. DOI: 10.1364/OE.400587.
- Volyar A, Abramochkin E, Egorov Yu, Bretsko M, Akimova Ya. Fine structure of perturbed Laguerre–Gaussian beams: Hermite–Gaussian mode spectra and topological charge. Appl Opt 2020; 59(25): 7680-7687. DOI: 10.1364/AO.396557.
- Izdebskaya Y, Shvedov V, Volyar A. Symmetric array of off-axis singular beams: spiral beams and their critical points. J Opt Soc Am A 2008; 25(1): 171-181. DOI: 10.1364/JOSAA.25.000171.
- Shen Y, Wang Z, Fu X, Naidoo D, Forbes A. SU (2) Poincaré sphere: A generalized representation for multidimensional structured light. Phys Rev A 2020; 102(3): 031501. DOI: 10.1103/PhysRevA.102.031501.
- Alonso M, Dennis M. A ray-optical Poincare sphere for structured Gaussian beams. Optica 2016; 4(4): 476-486. DOI: 10.1364/OPTICA.4.000476.
- Gutierrez-Cuevas R, Wadood SA, Vamivakas AN, Alonso MA. Modal Majorana sphere and hidden symmetries of structured-Gaussian beams. Phys Rev Lett 2020; 125: 123903. DOI: 10.1103/PhysRevLett.125.123903.
- Gutierrez-Cuevas R, Alonso MA. Platonic Gaussian beams: wave and ray treatment. Opt Lett 2020; 45(24): 6759-6762. DOI: 10.1364/OL.405988.
- Chen R-P, Chen Z, Chew K-H, Li P-G, Yu Z, Ding J, He S. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation. Sci Rep 2015; 5(1): 10628. DOI: 10.1038/srep10628.
- Zannotti A, Denz C, Alonso MA, Dennis MR. Shaping caustics into propagation invariant light. Nat Commun 2020; 11: 3597. DOI: 10.1038/s41467-020-17439-3.
- Soifer VA, Kharitonov SI, Khonina SN, Strelkov YuS, Porfirev AP. Spiral caustics of vortex beams. Photonics 2021; 8(1): 24. DOI: 10.3390/photonics8010024.
- Soifer VA, Kharitonov SI, Khonina SN, Volotovsky SG. Caustics of vortex optical beams. Doklady Physics 2019; 64: 276-279. DOI: 10.1134/S102833581907005X.
- Thom R. Structural stability and morphogenesis. Reading, MA: WA Benjamin Inc; 1975.
- Poston T, Stewart I. Catastrophe theory and its applications. London: Pitman; 1978.
- Nye JF. Natural focusing and fine structure of light: caustics and wave dislocations. Bristol: Institute of Physics; 1999. ISBN: 0-7503-0610-6.
- Arnold VI, ed. Dynamical Systems V: Bifurcation theory and catastrophe theory. Berlin, Heidelberg: Springer-Verlag; 1994. ISBN: 978-3-540-65379-0.
- Abramochkin E, Volostnikov V. Spiral-type beams: optical and quantum aspects. Opt Commun 1996; 125(4-6): 302-323. DOI: 10.1016/0030-4018(95)00640-0.
- Abramochkin EG, Volostnikov VG. Spiral light beams. Phys Usp 2004; 47: 1177-1203. DOI: 10.1070/PU2004v047n12ABEH001802.
- Berry MV, Nye JF, Wright FJ. The elliptic umbilic diffraction catastrophe. Philos Trans A Math Phys Eng Sci 1979; 291: 453-484. DOI: 10.1098/rsta.1979.0039.
- Nye JF. Dislocation lines in the hyperbolic umbilic diffraction catastrophe. Proc R Soc A 2006; 462(2072): 2299-2313. DOI: 10.1098/rspa.2006.1683.
- O’Holleran K, Dennis MR, Padgett MJ. Topology of light's darkness. Phys Rev Lett 2009; 102(14): 143902. DOI: 10.1103/ PhysRevLett.102.143902.
- Volyar A, Abramochkin E, Razueva E, Bretsko M, Akimova Ya. Geometry of spiral beams: 3D curved structured vortex beams and optical currents. J Opt 2021; 23(4): 044003. DOI: 10.1088/2040-8986/abed5c.
- Abramochkin EG, Volostnikov VG. Modern optics of Gaussian beams [In Russian]. Moscow: "Fizmatlit" Publisher; 2010. ISBN: 978-5-9221-1216-1.
- Razueva E, Abramochkin E. Multiple-twisted spiral beams. J Opt Soc Am A 2019; 36(6): 1089-1097. DOI: 10.1364/JOSAA.36.001089.
- Volyar AV, Shvedov VG, Fadeeva TA. Rotation of the wavefront of an optical vortex in free space. Tech Phys Lett 1999; 25(3): 203-206. DOI: 10.1134/1.1262423.
- Padgett MJ, Allen L. The Poynting vector in Laguerre-Gaussian laser modes. Opt Commun 1995; 121(1-3): 6-40. DOI: 10.1016/0030-4018(95)00455-H.
- Kotlyar VV, Kovalev AA, Volyar AV. Topological charge of a linear combination of optical vortices: topological competition. Opt Express 2020; 28(6): 8266-8281. DOI: 10.1364/OE.386401.
- Volyar A, Bretsko M, Akimova Ya, Egorov Yu. Orbital angular momentum and informational entropy in perturbed vortex beams. Opt Lett 2019; 44(29): 5687-5680. DOI: 10.1364/OL.44.005687.
- Berry MV. Optical currents. J Opt A–Pure Appl Op 2009; 11(9): 004001. DOI: 10.1088/1464-4258/11/9/094001.
- Berry MV, Dennis MR. Stream function for optical energy flow. J Opt 2011; 13(6): 064004. DOI: 10.1088/2040-8978/13/6/064004.
- Volyar A, Bretsko M, Akimova Y, Egorov Y. Measurement of the vortex and orbital angular momentum spectra with a single cylindrical lens. Appl Opt 2019; 58(21): 5748-5755. DOI: 10.1364/AO.58.005748.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20