(46-1) 02 * << * >> * Russian * English * Content * All Issues
Sinusoidal Gaussian optical vortex as a superposition of two hypergeometric beams
V.V. Kotlyar 1,2, A.A. Kovalev 1,2
1 IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
2 Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34
PDF, 1253 kB
DOI: 10.18287/2412-6179-CO-1008
Pages: 16-21.
Full text of article: Russian language.
Abstract:
We analyze the propagation of hypergeometric beams with a parabolic initial wavefront in a homogeneous medium. While hypergeomentric beams have a central amplitude singularity in the initial plane and are of infinite energy, superposition of two such beams has no singularity and is of finite energy. A particular case of such a superposition we study in detail is a sinusoidal Gaussian beam with a unit topological charge. This beam belongs to the class of elegant laser beams since it is described by the same complex-argument function both in the initial plane and in the Fresnel diffraction zone. The diameter of the first light ring of the sinusoidal Gaussian beam is almost independent of the Gaussian beam waist radius.
Keywords:
optical vortex, hypergeometric beam, beam energy, sinusoidal beam, light ring diameter.
Citation:
Kotlyar VV, Kovalev AA. Sinusoidal Gaussian optical vortex as a superposition of two hypergeometric beams. Computer Optics 2022; 46(1): 16-21. DOI: 10.18287/2412-6179-CO-1008.
Acknowledgements:
This work was supported by the Russian Science Foundation (project No. 18-19-00595, Section "Elegant sinusoidal Gaussian vortex with a unit topological charge", and project No. 22-22-00265, Sections "Hypergeometric beam with an initial parabolic wavefront" and "Linear combination of the hypergeometric beams"), and by the RF Ministry of Science and Higher Education within the State assignment of FSRC “Crystallography and Photonics” RAS (Section "Simulation").
References:
- Kotlyar VV, Skidanov RV, Khonina SN, Soifer VA. Hypergeometric modes. Opt Lett 2007; 32(7): 742-744. DOI: 10.1364/OL.32.000742.
- Karimi E, Zito G, Piccirillo B, Marrucci L, Santamato E. Hypergeometric-Gaussian modes. Opt Lett 2007; 32: 3053-3055.
- Kotlyar VV, Kovalev AA. Family of hypergeometric laser beams. J Opt Soc Am A 2008; 25(1): 262-270. DOI: 10.1364/JOSAA.25.000262.
- Karimi E, Piccirillo B, Marrucci L, Santamato E. Improved focusing with hypergeometric-Gaussian type-II optical modes. Opt Express 2008; 16: 21069-21075.
- Kotlyar VV, Kovalev AA, Skidanov RV, Khonina SN, Turunen J. Generating hypergeometric laser beams with a diffractive optical elements. Appl Opt 2008; 47(32): 6124-6133. DOI: 10.1364/AO.47.006124.
- Khonina SN, Balalaev SA, Skidanov RV, Kotlyar VV, Paivanranta B, Turunen J. Encoded binary diffractive element to form hypergeometric laser beams. J Opt A–Pure Appl Opt 2009; 11(6): 065702. DOI: 10.1088/1464-4258/11/6/065702.
- Kotlyar VV, Kovalev AA. Nonparaxial hypergeometric beams. J Opt A–Pure Appl Opt 2009; 11: 045711. DOI: 10.1088/1464-4258/11/4/045711.
- Kotlyar VV, Kovalev AA, Soifer VA. Lensless focusing of hypergeometric laser beams. J Opt 2011; 13: 075703. DOI:
- de Lima Bernardo B, Moraes F. Data transmission by hypergeometric modes through a hyperbolic-index medium. Opt. Express 2011; 19: 11264-11270.
- Tang B, Jiang C, Zhu H. Fractional Fourier transform for confluent hypergeometric beams. Phys Lett A 2012; 376: 2627-2631.
- Li J, Chen Y. Propagation of confluent hypergeometric beam through uniaxial crystals orthogonal to the optical axis. Opt Laser Technol 2012; 44: 1603-1610.
- Kotlyar VV, Kovalev AA, Nalimov AG. Propagation of hypergeometric laser beams in a medium with a parabolic refractive index. J Opt 2013; 15: 125706.
- Bian L, Tang B. Propagation properties of hypergeometric-Gaussian type-II beams through the quadratic-index medium. Appl Opt 2018; 57(17): 4735-4742.
- Bin T, Chun J, Haibin Z, Xin Z, Shuai W. The propagation of hypergeometric beams through an annular apertured paraxial ABCD optical system. Laser Phys 2014; 24: 125002.
- Peng J, Shan Z, Yuan Y, Cui Z, Huang W, Qu J. Focusing properties of Hypergeometric Gaussian beam through a high numerical-aperture objective. Prog Electromagn Res 2015; 51: 21-26.
- Zhu Y, Zhang L, Hu Z, Zhang Y. Effects of non-Kolmogorov turbulence on the spiral spectrum of Hypergeometric-Gaussian laser beams. Opt Express 2015; 23: 9137-9146.
- Wang X, Wang L, Zheng B, Yang Z, Zhao S. Effects of oceanic turbulence on the propagation of Hypergeometric-Gaussian beam carrying orbital angular momentum. Proc 2020 IEEE Int Conf on Communications Workshops 2020: 1-5.
- Wang X, Wang L, Zhao S. Research on hypergeometric-Gaussian vortex beam propagating under oceanic turbulence by theoretical derivation and numerical simulation. J Mar Sci Eng 2021; 9(4): 442.
- Bian L, Tang B. Evolution properties of hypergeometric-Gaussian type-II beams in strongly nonlocal nonlinear media. J Opt Soc Am B 2018; 35: 1362-1367.
- Bin T, Lirong B, Xin Z, Kai C. Propagation of hypergeometric Gaussian beams in strongly nonlocal nonlinear media. Laser Phys 2018; 28: 015001.
- Kovalev AA, Kotlyar VV, Porfirev AP. Auto-focusing accelerating hyper-geometric laser beams. J Opt 2016; 18: 025610. DOI: 10.1088/2040-8978/18/2/025610.
- Zhu Y, Zhang Y, Yang G. Evolution of orbital angular momentum mode of the autofocusing Hypergeometric-Gaussian beams through moderate-to-strong anisotropic non-Kolmogorov turbulence. Opt Commun 2017; 405: 66-72.
- Ebrahim AAA, Saad F, Ez-zariy L, et al. Theoretical conversion of the hypergeometric-Gaussian beams family into a high-order spiraling Bessel beams by a curved fork-shaped hologram. Opt Quant Electron 2017; 49: 169.
- Jin G, Bian L, Huang L, Tany B. Radiation forces of hypergeometric-Gaussian type-II beams acting on a Rayleigh dielectric sphere. Opt Laser Technol 2020; 126: 106124.
- Kotlyar VV, Kovalev AA, Abramochkin EG. Kummer laser beams with a transverse complex shift. J Opt 2020; 22(1): 015606. DOI: 10.1088/2040-8986/ab5ef1.
- Phillips RL, Andrews LC. Spot size and divergence for Laguerre-Gaussian beams of any order. Appl Opt 1983; 22(5): 643-644.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20