(46-3) 06 * << * >> * Russian * English * Content * All Issues

Limits of the correction ring applicability in an apodizer with a circular serrated aperture
I.M. Sizova 1, D.B. Stavrovskii 1,2

P.N. Lebedev Physical Institute RAS, 119991, Moscow, Russia, Leninsky pr. 53;
A.M. Prokhorov General Physics Institute RAS, 119991, Moscow, Russia, Vavilova 38

 PDF, 1112 kB

DOI: 10.18287/2412-6179-CO-1079

Pages: 395-405.

Full text of article: Russian language.

Abstract:
A theoretical investigation has been carried out of the evolution of a monochromatic laser beam profile after the beam exit from an apodizer. The optical scheme of the apodizer consists of a circular serrated aperture with a narrow opaque corrective ring and a spatial filter based on the Kepler telescope with a pinhole. Characteristic parameters of the apodizer have been found, which allows one to use the corrective ring for the improvement of the apodized beam profile quality and reduce the beam diffraction distortion at beam propagation over distances corresponding to the Fresnel numbers NF~5...2.

Keywords:
diffraction, diffractive optics, computer optics, apertures, apodization.

Citation:
Sizova IM, Stavrovskii DB. Limits of the correction ring applicability in an apodizer with a circular serrated aperture. Computer Optics 2022; 46(3): 395-405. DOI: 10.18287/2412-6179-CO-1079.

References:

  1. Sizova IM, Moskalev TYu, Mikheev LD. Laser beam shaping with circular serrated apertures. I. Spatial filtering. Appl Opt 2019; 58(18): 4905-4909. DOI: 10.1364/AO.58.004905.
  2. Sizova IM, Moskalev TYu, Mikheev LD. Laser beam shaping with circular serrated apertures. II. Theory of the beam profile formation. Appl Opt 2019; 58(18): 4910-4917. DOI: 10.1364/AO.58.004910.
  3. Sizova IM, Moskalev TYu, Stavrovskii DB. Correction of shape distortions in laser beams apodized with circular serrated apertures. Appl Opt 2021; 60(16): 4861-4870. DOI: 10.1364/AO.423334.
  4. Moskalev TYu, Mikheev LD. Laser beam apodizer [In Russian]. Pat RF of Invent N 2587694 of June 20, 2016, Russian Bull of Inventions N17, 2016.
  5. Aristov AI, Grudtsyn YaV, Zubarev IG, Ivanov NG, Konyashchenko AV, Krokhin ON, Losev VF, Mavritskiy AO, Mamaev SB, Mesyats GA, Mikheev LD, Panchenko YuN, Rastvortseva AA, Ratakhin NA, Sentis ML, Starodub AN, Tenyakov SYu, Utéza OP, Tcheremiskine VI, Yalovoi VI. Hybrid femtosecond laser system based on a photochemical XeF(C-A) amplifier with an aperture of 12 sm [In Russian]. Atmospheric and Oceanic Optics 2009; 22(11): 1029-1034.
  6. Mikheev LD, Tcheremiskine VI, Uteza OP, Sentis ML. Photochemical gas lasers and hybrid (solid/gas) blue-green femtosecond systems. Prog Quantum. Electron 2012; 36: 98-142. DOI: 10.1016/j.pquantelec.2012.03.004.
  7. Alekseev SB, Aristov AI, Grudtsyn YaV, Ivanov NG, Kovalchuk BM, Losev VF, Mamaev SB, Mesyats GA, Mikheev LD, Panchenko YuN, Polivin AV, Stepanov SG, Ratakhin NA, Yalovoi VI, Yastremskii AG. Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: state of the art and prospects. Quantum Electron 2013; 43(3): 190-200. DOI: 10.1070/QE2013v043n03ABEH015096.
  8. Mikheev LD, Losev VF. Multiterawatt hybrid (solid/gas) femtosecond systems in the visible. In Book: Viskup R, ed. High energy and short pulse lasers. IntechOpen; 2016: 131-161. DOI: 10.5772/63972.
  9. Alekseev SB, Ivanov NG, Losev VF, Mesyats GA, Mikheev LD, Ratakhin NA, Panchenko YuN. Attainment of a 40 TW peak output power with a visible-range hybrid femtosecond laser system. Quantum Electron 2019; 49(10): 901-904. DOI: 10.1070/QEL17050.
  10. Reddy ANK, Pal V. Robust design of diffractive optical elements for forming flat-top beams with extended depth of focus. Appl Phys B 2019; 125(12): 231. DOI: 10.1007/s00340-019-7345-2.
  11. Shealy DL, Hoffnagle JA. Laser beam shaping profiles and propagation. Appl Opt 2006; 45(21): 5118-5131. DOI: 10.1364/AO.45.005118.
  12. Gori F. Flattened Gaussian beams. Opt Comm 1994; 107: 335-341. DOI: 10.1016/0003-4018(94)90342-5.
  13. Tovar AA. Propagation of flat-topped multi-Gaussian laser beams. J Opt Soc Am A 2001; 18(8): 1897-1904. DOI: 10.1364/JOSAA.18.001897.
  14. Goncharenko AM. Gaussian beams of light [In Russian]. Minsk: “Nauka i Tehnika” Publisher; 1977.
  15. Oraevsky AN. Gaussian beams and optical resonators [In Russian]. Proceedings (Trudy) of the P.N. Lebedev Physics Institute 1988; 187: 3-59.
  16. Prudnikov AP, Brychkov YA, Marichev OI. Integrals and series. Volume 2. Special functions. New York: Gordon and Breach; 1986. ISBN: 978-2-88124-097-3.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20