(46-3) 07 * << * >> * Russian * English * Content * All Issues

Surface albedo retrieval based on high spatial resolution data
O.V. Nikolaeva 1

Keldysh Institute of Applied Mathematics RAS, Moscow

 PDF, 836 kB

DOI: 10.18287/2412-6179-CO-1046

Pages: 406-414.

Full text of article: Russian language.

Abstract:
The paper aims to compare the accuracy of three methods of solving the atmospheric correction problem for a Lambertian surface using high spatial resolution remotely sensed data.
     Three couples of formulas are presented. Each couple contains a formula for expressing the reflectance in a target pixel at the upper boundary of the atmosphere via albedo in target and adjacent pixels of the surface and a formula for the surface albedo in a target pixel via reflectances. The derivation of each couple of formulas is given. Derivation conditions are presented. Formulas of only one couple are found by solving the radiation transport equation in 1D geometry. Formulas of two other couples include values obtained by solving the transport equation in 3D geometry.
     Results of testing the accuracy of all formulas when solving an atmospheric correction problem on data of high (30 m) spatial resolution are given. Problems with aerosol optical depths from 0.2 to 2 for a wavelength of (lambda)=0.55(mu)m for all possible albedo values (from 0.1 to 0.9) in target and adjacent pixels are considered.
     It is shown that only one couple of formulas out of the three gives high accuracy under any condition. Formulas of the two other couples give sufficient accuracy (with less than 10 % error) only for a small value of the aerosol optical depth and a small difference of the albedo of the target and adjacent pixels.

Keywords:
surface albedo, atmospheric correction, high spatial resolution.

Citation:
Nikolaeva OV. Surface albedo retrieval based on high spatial resolution data. Computer Optics 2022; 46(3): 406-414. DOI: 10.18287/2412-6179-CO-1046.

References:

  1. Kaufman YJ, Tanre D, Gordon HR, Nakajima T, Lenoble J, Frouin R, Grassl H, Herman BM, King MD, Teillet PM. Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. J Geophys Res 1997; 102(D14): 16815-16830. DOI: 10.1029/97JD01496.
  2. Vermote EF, Kotchenova S. Atmospheric correction for the monitoring of land surfaces. J Geophys Res 2008; 113: D23S90. DOI: 10.1029/2007JD009662.
  3. Belyaev MY, Belyaev BI, Ivanov DA, Katkovsky LV, Martinov AO, Riazantsev VV, Sarmin EE, Siliuk VA, Shukajlo VG. Atmospheric correction of data registered on board the ISS. Part I. Methodology for spectra [In Russian]. Modern problems of remote sensing the Earth from Space 2018; 15(6): 213-222. DOI: 10.21046/2070-7401-2018-15-6-213-222.
  4. Ibrahim A, Franz B, Ahmad Z, Healy R, Knobelspiesse K, Gao BC, Proctor Ch, Zhai PW. Atmospheric correction for hyperspectral ocean color retrieval with application to the Hyperspectral Imager for the Coastal Ocean (HICO). Remote Sensing of Environment 2018; 204: 60-75. DOI: 10.1016/j.rse.2017.10.041.
  5. Kokhanovsky A, Box JE, Vandecrux B, Manko K, Lamare M, Smirnov A, Kern M. The determination of snow albedo from satellite measurements using fast atmospheric correction technique. Remote Sens 2020; 12(2): 234-251. DOI: 10.3390/rs12020234.
  6. Katkovsky LV, Martinov AO, Siliuk VA, Ivanov DA, Kokhanovsky AA. Fast atmospheric correction method for hyperspectral data. Remote Sens 2018; 10(11): 1698-1715. DOI: 10.3390/rs10111698.
  7. Lisenko SA. Atmospheric correction of multispectral satellite images based on the approximate model of the solar radiation transfer [In Russian]. Atmospheric Ocean Opt 2017; 30(9): 775-788. DOI: 10.15372/AOO20170906.
  8. Belov AM, Myasnikov VV. Atmospheric correction of hyperspectral images using approximate solution of MODTRAN transmittance equation. Computer Optics 2014; 38(3): 489-493. DOI: 10.18287/0134-2452-2014-38-3-489-493.
  9. Denisova AY, Juravel YN, Myasnikov VV. Estimation of parameters of a linear spectral mixture for hyperspectral images with atmospheric distortions. Computer Optics 2016; 40(3): 380-387. DOI: 10.18287/2412-6179-2016-40-3-380-387.
  10. Belov VV, Tarasenkov MV. On the accuracy and operation speed of RTM algorithms for atmospheric correction of satellite images in the visible and UV ranges [In Russian]. Atmospheric Ocean Opt 2013; 26(7): 564-571.
  11. Nikolaeva OV. A new algorithm of retrieving the surface albedo by satellite remote sensing data. Atmospheric Ocean Opt 2016; 29(4): 342-347. DOI: 10.1134/S1024856016040102.
  12. Nikolaeva OV. Studying the accuracy of the algorithm for retrieving the surface albedo with high spatial resolution from a fragment of a satellite Image. Atmospheric Ocean Opt 2016; 29(6): 526-532. DOI: 10.1134/S1024856016060105.
  13. Nikolaeva OV. On variants of the main atmospheric correction formula. Light Eng 2020; 28(4): 39-46. DOI: 10.33383/2019-061.
  14. EO-1 User Guide v.2.3. Source: <https://www.usgs.gov/centers/eros/earth-observing-1-hyperion-documentation>.
  15. Katsev IL, Zege EP, Prikhach AS. Atmosphere aerosol microphysical model for Belarus and adjacent regions [In Russian]. Atmospheric Ocean Opt 2016; 29(7): 572-578. DOI: 10.15372/AOO20160707.
  16. Mishchenko MI, Dlugach JM, Yanovitskij EG, Zakharova NT. Bidirectional reflectance of flat optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces. J Quant Spectrosc Radiat Transf 1999; 64: 409-432. DOI: 10.1016/S0022-4073(99)00028-X.
  17. Bassani C, Cavalli RM, Antonelli P. Influence of aerosol and surface reflectance variability on hyperspectral observed radiance. Atmos Meas Tech 2012; 5: 1193-1203. DOI: 10.5194/amt-5-1193-2012.
  18. Carlson BG. A method of characteristics and other improvements in solution methods for the transport equation. Nucl Sci Eng 1976; 61(3): 408-425. DOI: 10.13182/NSE76-A26927. Nikolaeva OV,
  19. Bass LP, Germogenova TA, Kuznetsov VS. Algorithms to calculation of radiative fields from localized sources via the code RADUGA-5.1(P). Transp Theory Stat Phys 2007; 36(4); 439-474. DOI: 10.1080/00411450701468308.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20