(46-4) 03 * << * >> * Russian * English * Content * All Issues

Comparison of the shape of focal spots in terms of intensity and energy flux for a high-aperture zone plate and a spiral zone plate
A.A. Savelyeva 1,2, E.S. Kozlova 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1427 kB

DOI: 10.18287/2412-6179-CO-934

Pages: 531-536.

Full text of article: Russian language.

Abstract:
Using a finite-difference time-domain method, it has been shown that focal spots generated when tightly focusing a linearly polarized Gaussian beam by a Fresnel zone plate (FZP) and when focusing a Gaussian beam with an embedded optical vortex by a spiral zone plate (SZP) have different patterns of the intensity and energy flux. The most significant differences are observed when the value of the topological charge (TC) is equal to three. The energy flux has an annular distribution when the Gaussian beam is focused by the FZP, while the SZP produces a field whose patterns of intensity and energy flux have three local maxima. The number of local maxima corresponds to the order of the SZP. At a certain distance from the focus, the petal structure of the intensity (and energy flux) changes to a ring distribution.

Keywords:
two-layered dielectric microcylinder, photonic nanojet, tight focusing, FDTD-method.

Citation:
Savelyeva AA, Kozlova ES. Comparison of the shape of focal spots in terms of intensity and energy flux for a high-aperture zone plate and a spiral zone plate. Computer Optics 2022; 46(4): 531-536. DOI: 10.18287/2412-6179-CO-934.

Acknowledgements:
The authors are grateful to V.V. Kotlyar for discussing the results of this study. The work was partly funded the Russian Science Foundation grant #18-19-00595 (Sections “Simulation” and “Discussion”), and the RF Ministry of Science and Higher Education within a state contract with the "Crystallography and Photonics" Research Center of the RAS (Section “Formulation of the problem”).

References:

  1. Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photonics 2009; 1(1): 1-57. DOI: 10.1364/AOP.1.000001.
  2. Kozlova ES, Stafeev SS, Fomchenkov SA, Podlipnov VV, Kotlyar VV. Transverse intensity at the tight focus of a second-order cylindrical vector beam. Computer Optics 2021; 45(2): 165-171. DOI: 10.18287/2412-6179-CO-835.
  3. Soskin M, Boriskina S, Chong Y, Dennis M, Desyatnikov A. Singular optics and topological photonics. J Opt 2017; 19(1): 010401. DOI: 10.1088/2040-8986/19/1/010401.
  4. Padgett MJ. Orbital angular momentum 25 years on. Opt Express 2017; 25(10): 11265-11274. DOI: 10.1364/OE.25.011265.
  5. Shen Y, Wang X, Xie Z. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl 2019; 8: 90. DOI: 10.1038/s41377-019-0194-2.
  6. Volyar AV, Bretsko MV, Akimova YE, Egorov YA. Shaping and processing the vortex spectra of singular beams with anomalous orbital angular momentum. Computer Optics 2019; 43(4): 517-527. DOI: 10.18287/2412-6179-2019-43-4-517-527.
  7. Cheng K, Lu G, Zhong X. The Poynting vector and angular momentum density of Swallowtail-Gauss beams. Opt Commun 2017; 396: 517-527.
  8. Kotlyar VV, Kovalev AA. Orbital angular momentum of an astigmatic Gaussian laser beam. Computer Optics 2017; 41(5): 609-616. DOI: 10.18287/2412-6179-2017-41-5-609-616.
  9. Zhang H, Li X, Ma H, Tang MLH, Cai Y. Centrosymmetric optical vortex. Appl Sci 2019; 9: 1429.
  10. Khonina SN, Savelyev DA, Kazanskiy NL. Vortex phase elements as detectors of polarization state. Opt Express 2015; 23(14): 17845-17859. DOI: 10.1364/OE.23.017845.
  11. Kitamura K, Kitazawa M, Noda S. Generation of optical vortex beam by surface-processed photonic-crystal surface-emitting lasers. Opt Express 2019; 27(2): 1045-1050.
  12. Wang X, Nie Z, Liang Y, Wang J, Li T, Jia B. Recent advances on optical vortex generation. Nanophotonics 2018; 7(9): 1533-1556.
  13. Uren R, Beecher S, Smith CR, Clarkson WA. Method for generating high purity Laguerre–Gaussian vortex modes. IEEE J Quantum Electron 2019; 55(5): 1700109.
  14. Zhou H, Yang J, Gao C, Fu S. High-efficiency, broadband all-dielectric transmission metasurface for optical vortex generation. Opt Mater Express 2019; 9: 2699-2707.
  15. Liu DZ. Propagation of partially coherent vortex beams in atmospheric turbulence by a spatial light modulator. Laser Phys Lett 2019; 16: 056003.
  16. Luo C, Han X. Evolution and Beam spreading of Arbitrary order vortex beam propagating in atmospheric turbulence. Opt Commun 2020; 460: 124888.
  17. Li Y, Yu L. Zhang Y. Influence of anisotropic turbulence on the orbital angular momentum modes of Hermite-Gaussian vortex beam in the ocean. Opt Express 2017; 25: 12203-12215.
  18. Yu J, Huang Y, Greg G, Wang F, Cai Y. Enhanced backscatter of vortex beams in double-pass optical links with atmospheric turbulence. J Quant Spectrosc Radiat Transf 2019; 228: 1-10.
  19. Olvera-Santamaria MA, Garcia-Garcia J, Tlapale-Aguilar A, Silva-Barranco J, Rickenstorff-Parrao C, Ostrovsky AS. Cylindrically polarized perfect optical vortex: Generation and focusing properties. Opt Commun 2020; 467(15): 125693.
  20. Stafeev SS, Nalimov AG. Longitudinal component of the Poynting vector of a tightly focused optical vortex with circular polarization. Computer Optics 2018; 42(2): 190-196. DOI: 10.18287/2412-6179-2018-42-2-190-196.
  21. Stafeev SS, Kotlyar VV. Tight focusing of a sector-wise azimuthally polarized optical vortex. Computer Optics 2017; 41(2): 147-154. DOI: 10.18287/2412-6179-2017-41-2-147-154.
  22. Khonina SN, Kazanskiy NL, Volotovsky SG. Influence of vortex transmission phase function on intensity distribution in the focal area of high-aperture focusing system. Optical Memory and Neural Networks 2011; 20(1): 23-42. DOI: 10.3103/S1060992X11010024.
  23. Kanev F, Aksenov V, Veretekhin I. Analyses of optical vortex registration methods. Proc SPIE 2020; 11560: 115602B.
  24. Kotlyar VV, Kovalev AA. Topological charge of optical vortices devoid of radial symmetry. Computer Optics 2020; 44(4): 510-518. DOI: 10.18287/2412-6179-CO-719.
  25. Karpeev SV, Paranin VD, Khonina SN. Generation of nonuniformly polarised vortex Bessel beams by an interference polarizer. Quantum Electron 2018; 48(6): 521-526. DOI: 10.1070/QEL16603.
  26. Lu YM, Tian ZN, Yang SN, Hua JG, Liu XQ, Zhao Y, Chen QD, Zhang YL, Sun HB. High-efficiency spiral zone plates in sapphire. IEEE Photon Technol Lett 2019; 31(12): 979-982.
  27. Kozlova ES. Modeling of the optical vortex generation using a silver spiral zone plate. Computer Optics 2018; 42(6): 977-984. DOI: 10.18287/2412-6179-2018-42-6-977-984.
  28. Zhang Y, Yang X, Gao J. Orbital angular momentum transformation of optical vortex with aluminum metasurfaces. Sci Rep 2019; 9: 9133.
  29. Rubano A, Cardano F, Piccirillo B, Marrucci L. Q-plate technology: a progress review [Invited]. J Opt Soc Am B 2019; 36(5): D70-D87.
  30. Ji W, Lee C-H, Chen P, Hu W, Ming Y, Zhang L, Lin T-H, Chigrinov V, Lu Y-Q. Meta-q-plate for complex beam shaping. Sci Rep 2016; 6(1): 25528.
  31. Sharma M, Amirkhan F, Mishra SK, Sengupta D, Messaddeq Y, Blanchard F, Ung B. Annular core photonic crystal fiber for transmission of endlessly mono-radial vortex beams. OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF) OSA Technical Digest 2020: SoM3H.7.
  32. Kotlyar VV, Nalimov AG. A vector optical vortex generated and focused using a metalens. Computer Оptics 2017; 41(5): 645-654. DOI: 10.18287/2412-6179-2017-41-5-645-654.
  33. Lavery MPJ, Peuntinger C, Gunthner K, Banzer P, Elser D, Boyd RW, Padgett MJ, Marquardt C, Leuchs G. Free-space propagation of high-dimensional structured optical fields in an urban environment. Sci Adv 2017; 3(10): e1700552.
  34. Zhu Y, Tan H, Zhou N, Chen L, Wang J, Cai X. Compact high-efficiency four-mode vortex beam generator within the telecom C-band. Opt Lett 2020; 45(7): 1607-1610.
  35. Takahaashi F, Miyamoto K, Hidai H, Yamane K, Morita R, Omatsu T. Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle. Sci Rep 2016; 6: 21738.
  36. Backlund MP, Lew MD, Backer AS, Sahl SJ, Grover G, Agrawal A, Piestun R, Moerner WE. The double-helix point spread function enables precise and accurate measurement of 3D single-molecule localization and orientation. Proc SPIE 2013; 8590: 85900L.
  37. Suarez RAB, Ambrosio LA, Neves AAR, Zamboni-Rached M, Gesualdi MRR. Experimental optical trapping with frozen waves. Optics 2020; 45(9): 2514-2517.
  38. Bunea AI, Gluckstad J. Strategies for optical trapping in biological samples: Aiming at microrobotic surgeons. Laser Photon Rev 2019; 13(4): 1800227.
  39. Yu S, Pung F, Liu H, Li X, Yang J, Wang T. Compositing orbital angular momentum beams in Bi4Ge3O12 crystal for magnetic field sensing. Appl Phys Lett 2017; 111(9): 091107.
  40. Kotlyar VV, Stafeev SS, Nalimov AG. Reverse flow of light energy in focus [In Russian]. Moscow: "Fizmatlit" Publisher; 2021.
  41. Kotlyar VV, Kovalev AA, Porfirev AP. Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl Opt 2017; 56(14): 4095-4104. DOI: 10.1364/AO.56.004095.
  42. Kotlyar VV, Stafeev SS, Nalimov AG. Energy backflow in the focus of a light beam with phase or polarization singularity. Phys Rev A 2019; 99(3): 033840. doi: 10.1103/PhysRevA.99.033840.
  43. Kotlyar VV, Stafeev SS, Nalimov AG, Schulz S, O'Faolain L. Two-petal laser beam near a binary spiral axicon with topological charge 2. Opt Laser Technol 2019; 119: 105649. doi: 10.1016/j.optlastec.2019.105649.
  44. Degtyarev SA, Porfirev AP, Khonina SN. Photonic nanohelix generated by a binary spiral axicon. Appl Opt 2016; 55(12): B44-B48. doi: 10.1364/AO.55.000B44.
  45. Kotlyar VV, Kovalev AA, Skidanov RV, Moiseev OYu, Soifer VA. Diffraction of a finite-radius plane wave and a Gaussian beam by a helical axicon and a spiral phase plate. J Opt Soc Am A 2007; 24(7): 1955-1964. doi: 10.1364/JOSAA.24.001955.
  46. Kotlyar VV, Stafeev SS, Nalimov AG. Sharp focusing of laser light. CRC Press; 2020. ISBN 9780367364441.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20