(46-5) 03 * << * >> * Russian * English * Content * All Issues

Coherent superposition of the Laguerre-Gaussian beams with different wavelengths: colored optical vortices
V.V. Kotlyar 1,2, A.A. Kovalev 1,2, A.A. Savelyeva 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 4109 kB

DOI: 10.18287/2412-6179-CO-1106

Pages: 692-700.

Full text of article: Russian language.

Abstract:
We calculate the topological charge (TC) of a coherent axial superposition of different-"color" Laguerre-Gaussian (LG) beams, each having a different wavelength and TC. It is found that the TC of such a superposition is equal to the TC of the longer-wavelength constituent LG beam regardless of the weight coefficient of this beam in the superposition and its corresponding TC. It is interesting that the instantaneous TC of such a superposition is conserved and the (time-averaged) intensity distribution of the "colored" optical vortex changes its light "gamut": whereas in the near field with increasing radius, colors of the light rings (rainbow) change according to their TC in the superposition from the smaller TC to the larger one, upon free-space propagation (to the far field), with increasing radius, the ring colors in the rainbow get arranged in the reverse order from the larger TC to the smaller one. It is also shown that choosing the wavelengths (blue, green, and red)in a special way in a three-color superposition of single-ringed LG beams allows obtaining a time-averaged white light ring at a certain distance.

Keywords:
optical vortex, colored beam, topological charge, Laguerre-Gaussian beam.

Citation:
Kotlyar VV, Kovalev AA, Savelyeva AA. Coherent superposition of the Laguerre-Gaussian beams with different wavelengths: colored optical vortices. Computer Optics 2022; 46(5): 692-700. DOI: 10.18287/2412-6179-CO-1106.

Acknowledgements:
The work was partly funded by the Russian Science Foundation under grant # 18-19-00595 (sections "Topological charge of a superposition of two colored optical vortices" and "Topological charge of a white optical vortex") and the Ministry of Science and Higher Education of the Russian Federation within the State assignment for the FSRC "Crystallography and Photonics" RAS (section "Modeling").

References:

  1. Kotlyar VV, Kovalev AA. Topological charge of optical vortices. Samara: "Novaya Tehnika" Publisher; 2021. ISBN: 978-5-88940-157-5.
  2. Kotlyar VV, Kovalev AA, Amiri P, Soltani P, Rasouly S. Topological charge of two parallel Laguerre-Gaussian beams. Opt Express 2021; 29: 42962-42977. DOI: 10.1364/OE.446743.
  3. Arkhelyuk OO, Polyanskii PV, Ivanovskii AA, Soskin MS. Creation and diagnostics of stable rainbow optical vortices. Opt Appl 2004; 34(3): 419-426.
  4. Denisenko V, Shvedov V, Desyatnikov AS, Neshev DN, Krolikovski W, Volyar A, Soskin M, Kivshar YS. Determination of topological charges of polychromatic optical vortices. Opt Express 2009; 17(26): 23374-23379. DOI: 10.1364/OE.17.023374.
  5. Hakobyan D, Magallanes H, Seniutinas G, Juodkazis S, Brasselet E. Tailoring orbital angular momentum of light in the visible domain with metallic metasurfaces. Adv Opt Mater 2015; 4(2): 306-312. DOI: 10.1002/adom.201500494.
  6. Kobashi J, Yoshida H, Ozaki M. Polychromatic optical vortex generation from patterned cholesteric liquid crystal. Phys Rev Lett 2016; 116(25): 253903. DOI: 10.1103/PhysRevLett.116.253903.
  7. Zhang Y, Guo H, Qiu X, Lu X, Ren X, Chen L. LED-based chromatic and white-light vortices of fractional topological charges. Opt Commun 2021; 485: 126732. DOI: 10.1016/j.optcom.2020.126732.
  8. Kotlyar VV, Almazov AA, Khonina SN, Soifer VA, Elfstrom H, Turunen J. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. J Opt Soc Am A 2005; 22(5): 849-861. DOI: 10.1364/JOSAA.22.000849.
  9. Vallone G. On the properties of circular beams: normalization, Laguerre-Gauss expansion, and free-space divergence. Opt Lett 2015; 40(8): 1717-1720. DOI: 10.1364/OL.40.001717.
  10. Vallone G. Role of beam waist in Laguerre-Gauss expansion of vortex beams. Opt Lett 2017; 42(6): 1097-1100. DOI: 10.1364/OL.42.001097.
  11. Berry MV. Optical vortices evolving from helicoidal integer and fractional phase steps. J Opt A–Pure Appl Opt 2004; 6: 259-268. DOI: 10.1088/1464-4258/6/2/018.
  12. Prudnikov AP, Brychkov YuA, Marichev OI. Integrals and Series: Special functions. CRC Press; 1986. ISBN: 978-2-88124-090-4.
  13. Kotlyar VV, Kovalev AA, Volyar AV. Topological charge of a linear combination of optical vortices: topological competition. Opt Express 2020; 28(6): 8266-8281. DOI: 10.1364/OE.386401.
  14. Soskin MS, Gorshkov VN, Vasnetsov MV, Malos JT, Heckenberg NR. Topological charge and angular momentum of light beams carrying optical vortices. Phys Rev A 1997; 56(5): 4064-4075. DOI: 10.1103/PhysRevA.56.4064.
  15. Kovalev AA, Kotlyar VV, Nalimov AG. Topological charge and asymptotic phase invariants of vortex laser beams. Photonics 2021; 8(10): 445. DOI: 10.3390/photonics8100445.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20