(46-5) 04 * << * >> * Russian * English * Content * All Issues

Structured light transformations and orbital angular momentum control in a three-coil optical snake
C.N. Alexeyev 1, S.S. Aliyeva 1, E.V. Barshak 1, B.P. Lapin 1, M.A. Yavorsrky 1

V.I. Vernadsky Crimean Federal University, 295000, Simferopol, Russia, Prospekt Vernadskogo 4

 PDF, 1424 kB

DOI: 10.18287/2412-6179-CO-1121

Pages: 701-712.

Full text of article: Russian language.

Abstract:
In this paper, we studied transformations of structured light and its angular momentum in a three-coil optical snake – a coil resonator composed of 3 evanescently uniformly coupled coils of a multimode fiber. We have suggested a fully vectorial theory of normal modes of the 3-coil resona-tor, which takes account of the spin-orbit interaction. On the basis of the analytical expressions for such normal modes and their propagation constants we have studied transmission of some types of structured light beams – optical vortices, Hermite-Gaussian-like and Laguerre-Gaussian beams – through such a system. We have shown the possibility of a super-efficient parametric control over the topological charge, orbital and spin angular momenta of the outcoming optical field by this system. We have theoretically demonstrated implementation of logic X and Y Pauli gates for light beams carrying orbital angular momentum on the basis of such a 3-coil resonator.

Keywords:
coupled fibers, microcoil fiber resonator, structured light, optical snake, optical vortex conversion, Pauli gate.

Citation:
Alexeyev CN, Alieva SS, Barshak EV, Lapin BP, Yavorsky MA. Structured light transformations and orbital angular momentum control in a three-coil optical snake. Computer Optics 2022; 46(5): 701-712. DOI: 10.18287/2412-6179-CO-1121.

Acknowledgements:
This work was funded by the Russian Science Foundation under Grant 20-12-00291.

References:

  1. Andrews DL. Structured light and its applications: An introduction to phase-structured beams and nanoscale optical forces. New York, USA: Academic Press; 2008. ISBN: 978-0-12-374027-4.
  2. Forbes A, de Oliveira M, Dennis MR. Structured light. Nat Photonics 2021; 15: 253-262. DOI: 10.1038/s41566-021-00780-4.
  3. Lazarev G, Chen P-J, Strauss J, Fontaine N, Forbes A. Beyond the display: phase-only liquid crystal on Silicon devices and their applications in photonics [Invited]. Opt Express 2019; 27(11): 16206-16249. DOI: 10.1364/OE.27.016206.
  4. Rubano A, Cardano F, Piccirillo B, Marrucci L. Q-plate technology: a progress review [Invited]. J Opt Soc Am B 2019; 36(5): D70-D87. DOI: 10.1364/JOSAB.36.000D70.
  5. Kozlova ES, Kotlyar VV, Nalimov AG. Comparative modeling of amplitude and phase zone plates. Computer Optics 2015; 39(5): 687-693. DOI: 10.18287/0134-2452-2015-39-5-687-693.
  6. Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photonics 2009; 1(1): 1-57. DOI: 10.1364/AOP.1.000001.
  7. Yang Y, Ren Y, Chen M, Arita Y, Rosales-Guzmán C. Optical trapping with structured light: a review. Advanced Photonics 2021; 3(3): 034001. DOI: 10.1117/1.AP.3.3.034001.
  8. Porfirev AP, Kovalev AA, Kotlyar VV. Optical trapping and moving of microparticles using asymmetrical Bessel-Gaussian beams. Computer Optics 2016; 40(2): 152-157. DOI: 10.18287/2412-6179-2016-40-2-152-157.
  9. Pang F, Xiang L, Liu H, Zhang L, Wen J, Zeng X, Wang T. Review on fiber-optic vortices and their sensing applications. J Lightw Technol. 2021; 39(12): 3740-3750. DOI: 10.1109/JLT.2021.3064573.
  10. Engay E, Rodrigo PJ. Nonlinear optical vortex coronagraph. Opt Lett 2020; 45(6): 1579-1582. DOI: 10.1364/OL.383311.
  11. Padgett MJ. Orbital angular momentum 25 years on [Invited]. Opt Express 2017; 25(10): 11265-11274. DOI: 10.1364/OE.25.011265.
  12. Willner AE, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery MPJ, Tur M, Ramachandran S, Molisch AF, Ashrafi N, Ashrafi S. Optical communications using orbital angular momentum beams. Advances in Optics and Photonics 2015; 7(1): 66-106. DOI: 10.1364/AOP.7.000066.
  13. Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl 2019; 8: 90. DOI: 10.1038/s41377-019-0194-2.
  14. Otte E, Nape I, Rosales-Guzmán C, Denz C, Forbes A, Ndagano B. High-dimensional cryptography with spatial modes of light: tutorial. J Opt Soc Am B 2020; 37(11): A309-A323. DOI: 10.1364/JOSAB.399290.
  15. Barshak EV, Lapin BP, Vikulin DV, Alieva SS, Alexeyev CN, Yavorsky MA. All-fiber SWAP-CNOT gate for optical vortices. Computer Optics 2021; 45(6): 853-859. DOI: 10.18287/2412-6179-CO-938.
  16. Alexeyev CN, Volyar AV, Yavorsky MA. Fiber optical vortices. In Book: Chen LI, ed. Lasers, optics and electro-optics research trends. Chap 5. New York, USA: Nova Publishers; 2007: 131-223.
  17. Wang J. Advances in communications using optical vortices. Photon Res 2016; 4(5): B14-B28. DOI: 10.1364/PRJ.4.000B14.
  18. Heebner JE, Boyd RW, Park Q-H. SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides. J Opt Soc Am B 2002; 19(4): 722-731. DOI: 10.1364/JOSAB.19.000722.
  19. Yariv A, Xu Y, Lee RK, Scherer A. Coupled-resonator optical waveguide: a proposal and analysis. Opt Let7 1999; 24(11): 711-713 DOI: 10.1364/OL.24.000711.
  20. Sumetsky M. Basic elements for microfiber photonics: micro/nanofibers and microfiber coil resonators. J Lightw Technol 2008; 26(1): 21-27. DOI: 10.1109/JLT.2007.911898.
  21. Sumetsky M. Optical fiber microcoil resonator. Opt Express 2004; 12(10): 2303-2316. DOI: 10.1364/OPEX.12.002303.
  22. Ma C-J, Ren L-Y, Xu Y-P, Wang Y-L, Zhou H, Fu H-W, Wen J. Theoretical and experimental study of structural slow light in a microfiber coil resonator. Appl Opt 2015; 54(18): 5619-5623. DOI: 10.1364/AO.54.005619.
  23. Lee T, Broderick NGR, Brambilla G. Berry phase magnification in optical microcoil resonators. Opt Lett 2011; 36(15): 2839-2841. DOI: 10.1364/OL.36.002839.
  24. Zhang F, Chen X. Anomalous optical propagation and potential sensitivity enhancement in a micro-coil resonator based on microfiber. IEEE Photon J 2021; 13(4): 3091146. DOI: 10.1109/JPHOT.2021.3091146.
  25. Alexeyev CN, Aliyeva SS, Barshak EV, Lapin BP, Yavorsky MA. Super-efficient control of angular momentum and mode conversion in snake-type fiber resonators. J Opt Soc Am B 2021; 38(12): F29-F37. DOI: 10.1364/JOSAB.433997.
  26. Alexeyev CN, Boklag NA, Yavorsky MA. Higher order modes of coupled optical fibres. J Opt 2010; 12(11): 115704. DOI: 10.1088/2040-8978/12/11/115704.
  27. Snyder AW, Love JD. Optical waveguide theory. London, New York: Chapman and Hall; 1983. ISBN: 0-412-09950-0.
  28. Alexeyev CN, Barshak EV, Lapin BP, Yavorsky MA. The structure of normal modes in parallel ideal optical fibers with strong coupling. Computer Optics 2020; 44(6): 876-882. DOI: 10.18287/2412-6179-CO-777.
  29. Sumetsky M. Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation. Opt Express 2005; 13(11): 4331-4340. DOI: 10.1364/OPEX.13.004331.
  30. Alexeyev CN, Milodan AV, Alexeyeva MC, Yavorsky MA. Inversion of the topological charge of optical vortices in a coil fiber resonator. Opt Lett 2016; 41(7): 1526-1529. DOI: 10.1364/OL.41.001526.
  31. Schwelb O. Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview. J Lightw Technol 2004; 22(5): 1380-1394. DOI: 10.1109/JLT.2004.827666.
  32. Hong S, Zhang L, Wang Y, Zhang M, Xie Y, Dai D. Ultralow-loss compact silicon photonic waveguide spirals and delay lines. Photon Res 2022; 10(1): 1-7. DOI: 10.1364/PRJ.437726.
  33. Korotkova O, Gbur G. Jones and Stokes–Mueller analogous calculi for OAM-transforming optics. Opt Lett 2021; 46(11): 2585-2588. DOI: 10.1364/OL.424618.
  34. Chen J, Wan C, Zhan Q. Engineering photonic angular momentum with structured light: a review. Adv Photon 2021; 3(6): 064001. DOI: 10.1117/1.AP.3.6.064001.
  35. Alexeyev CN, Barshak EV, Lapin BP, Yavorsky MA. Transmission of optical vortices through fiber loop resonators. Opt Lett 2019; 44(16): 4044-4047. DOI: 10.1364/OL.44.004044.
  36. Alexeyev CN, Barshak EV, Lapin BP, Yavorsky MA. Topological resonances, superefficient orbital-angular-momentum control, and spin-orbit-interaction enhancement in fiber-loop resonators. Phys Rev A 2020; 101(6): 063801. DOI: 10.1103/PhysRevA.101.063801.
  37. Alexeyev CN, Barshak EV, Lapin BP, Vikulin DV, Yavorsky MA. Parametric control of propagation of optical vortices through fibre ring resonators. J Opt 2021; 23(6): 064005. DOI: 10.1088/2040-8986/abf6de.
  38. Berry MV. Paraxial beams of spinning light. Proc SPIE 1998; 3487: 6-11. DOI: 10.1117/12.317704.
  39. Padgett MJ, Courtial J. Poincare-sphere equivalent for light beams containing orbital angular momentum. Opt Lett 1999; 24(7): 430-432. DOI: 10.1364/OL.24.000430.
  40. Laleh MS, Razaghi M. Simulation of reconfigurable double-input optical gates based on a microring flower-like structure, part I. basic gates. Appl Opt 2020; 59(15): 4589-4598. DOI: 10.1364/AO.385962.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20