(46-5) 07 * << * >> * Russian * English * Content * All Issues
  
Size effect of gold nanoparticles on optical and electrical properties of plasmonic silicon solar cell
 J. Gulomov 1, R. Aliev 1, I. Gulomova 1
 1 Andijan State University, 170316, Andijan, Uzbekistan, Universitet str. 129
 
 PDF, 829 kB
  PDF, 829 kB
DOI: 10.18287/2412-6179-CO-1089
Pages: 733-740.
Full text of article: English language.
 
Abstract:
One of important tasks of the day is increasing the efficiency and decreasing the cost of the silicon solar cells. There is method of introducing of metal nanoparticles into solar cells to improve its absorption and reduce transmission as well as reflection coefficients. When metal nanoparticles are introduced into silicon solar cell, nanoplasmonic effect will occur. Nanoplasmonic effect lead to modification of light spectrum and generation of extra hot electrons. Nano-plasmonic effect strongly depends on size of nanoparticles. Therefore, in this paper, effect of gold nanoparticles size on properties of silicon solar cell has been studied by using simulation. Gold nanoparticles with sizes of 4 nm, 6 nm, 9 nm, 11 nm and 21 nm have been input into emitter region of silicon solar cell in order to use both of nanoplasmonic-electric and nanoplasmonic-optic effects for enhancing efficiency of silicon solar cell. Open circuit voltage didn't change when size of nanoparticles has been changed from 4 nm to 11 nm. It dropped by 0.017 V when size of nanoparticles was 21 nm. Short circuit current has been maximum 6.7 mA/cm2  at nanoparticle size of 11 nm and minimum 3.1 mA/cm2  at nanoparticle size of 21 nm. It has been found from obtained results that gold nanoparticle with size of 11 nm affected significantly on properties of silicon solar cell. Besides, thickness of silicon solar cell can be decreased without dropping of efficiency by introducing gold nanoparticles. Because, main part of photons is absorbed near to metal nanoparticles inputted region.
Keywords:
silicon, nanoplasmonics, nanoparticle, solar cell, simulation, gold.
Citation:
  Gulomov J, Aliev R, Gulomova I. Size effect of gold nanoparticles on optical and electrical properties of plasmonic silicon solar cell. Computer Optics 2022; 46(5): 733-740. DOI: 10.18287/2412-6179-CO-1089.
Acknowledgements:
  This work was supported by the Fundamental Research Project of Ministry of Innovative Development of the Republic of Uzbekistan (Project No. FZ-2020092973).
References:
  - Meyer AR, et al. Atomic  structure of light-induced efficiency-degrading defects in boron-doped  Czochralski silicon solar cells. Energy Environ Sci 2021; 14(10): 5416-5422. DOI: 10.1039/d1ee01788h.
- Xiang HJ, Huang B, Kan E, Wei SH, Gong XG.  Towards direct-gap silicon phases by the inverse band structure design approach.  Phys Rev Lett 2013; 110(11): 118702. DOI:  10.1103/PhysRevLett.110.118702. 
 
- Gu YQ, Xue CR,  Zheng ML. Technologies to reduce optical losses of silicon solar cells. Adv Mat  Res 2014; 953-954: 91-94. DOI:  10.4028/www.scientific.net/AMR.953-954.91.
 
- Saravanan  S, Dubey RS, Kalainathan S, More MA, Gautam D K. Design and optimization of  ultrathin crystalline silicon solar cells using an efficient back reflector.  AIP Adv 2015; 5(5): 057160. DOI:  10.1063/1.4921944.
 
- Huang  X, Han S, Huang W, Liu X. Enhancing solar cell efficiency: the search for luminescent  materials as spectral converters. Chem Soc Rev 2012; 42(1): 173-201. DOI: 10.1039/C2CS35288E.
 
- Lopez-Delgado  R, et al. Enhanced conversion efficiency in Si solar cells employing  photoluminescent down-shifting CdSe/CdS core/shell quantum dots. Sci Rep 2017;  7(1): 14104. DOI:  10.1038/s41598-017-14269-0.
 
- Trupke  T, Green MA, Würfel P. Improving solar cell efficiencies by down-conversion of  high-energy photons. J Appl Phys2002; 92(3): 1668. DOI: 10.1063/1.1492021.
 
- Richards  BS. Enhancing the performance of silicon solar cells via the application of  passive luminescence conversion layers. Sol Energy Mater Sol Cells 2006; 90(15):  2329-2337. DOI:  10.1016/j.solmat.2006.03.035.
 
- Klampaftis  E, Ross D, McIntosh KR, Richards BS. Enhancing the performance of solar cells  via luminescent down-shifting of the incident spectrum: A review. Sol Energy  Mater Sol Cells 2009; 93(8): 1182-1194. DOI:  10.1016/j.solmat.2009.02.020.
 
- van  Sark WGJHM, de Wild J, Rath JK, Meijerink A, Schropp REI. Upconversion in solar  cells. Nanoscale Res Lett 2013; 8(1): 81. DOI:  10.1186/1556-276X-8-81.
 
- Kumaragurubaran  B, Anandhi S. Reduction of reflection losses in solar cell using Anti  Reflective coating. 2014 Int Conf on Computation of Power, Energy, Information  and Communication (ICCPEIC 2014) 2014: 155-157. DOI: 10.1109/ICCPEIC.2014.6915357.
 
- Kim  J. Optimization of SiNx layer for solar cell using computational method. Curr  Appl Phys 2011; 11(1): S39-S42. DOI:  10.1016/j.cap.2010.11.048.
 
- Glunz  SW, Feldmann F. SiO2 surface passivation layers – a key technology for silicon  solar cells. Sol Energy Mater Sol Cells 2018; 185: 260-269. DOI: 10.1016/j.solmat.2018.04.029.
 
- Lien SY , Wuu DS, Yeh WC, Liu JC. Tri-layer antireflection  coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel  technique. Sol Energy Mater Sol Cells 2006; 90(16): 2710-2719. DOI: 10.1016/j.solmat.2006.04.001.
 
- Gulomov  J, Aliev R. Analyzing periodical textured silicon solar cells by the TCAD  modeling. Sci Tech J Inf Technol Mech Opt 2021; 21(5): 626-632. DOI:  10.17586/2226-1494-2021-21-5-626-632.
 
- Han  SE, Chen G. Optical absorption enhancement in silicon nanohole arrays for solar  photovoltaics. Nano Lett 2010; 10(3): 1012-1015. DOI: 10.1021/NL904187M.
 
- Al-Ashouri  A, et al. Monolithic perovskite/silicon tandem solar cell with >29%  efficiency by enhanced hole extraction. Science 1979; 370(6522): 1300-1309. DOI: 10.1126/science.abd4016.
 
- Khokhar  MQ, et al. High-efficiency hybrid solar cell with a nano-crystalline silicon  oxide layer as an electron-selective contact. Energy Convers Manag 2022; 252:  115033. DOI:  10.1016/j.enconman.2021.115033.
 
- Kadhum  HA, Salih WM, Rheima AM. Improved PSi/c-Si and Ga/PSi/c-Si nanostructures  dependent solar cell efficiency. Appl Phys A 2020; 126(10): 802. DOI: 10.1007/s00339-020-03985-6.
 
- Yalamanchili  S, Lewis NS, Atwater  HA. Role of doping dependent radiative and non-radiative recombination in determining  the limiting efficiencies of silicon solar cells. 2018 IEEE 7th World Conf on  Photovoltaic Energy Conversion, WCPEC 2018 – A Joint Conf of 45th IEEE PVSC,  28th PVSEC and 34th EU PVSEC 2018: 3223-3226. DOI:  10.1109/PVSC.2018.8547758.
 
- Pang SK, Smith AW, Rohatgi A. Effect of  trap location and trap-assisted auger recombination on silicon solar cell  performance. IEEE Trans Electron Devices 1995; 42(4): 662-668. DOI: 10.1109/16.372065.
 
- Gogolin  R, Harder NP. Trapping behavior of Shockley-Read-Hall recombination centers in  silicon solar cells. J Appl Phys 2013;  114(6): 064504. DOI:  10.1063/1.4817910.
 
- Choy  WCH. Plasmon-optical and plasmon-electrical effects for improve performances of  solar cells. 2016 Progress in Electromagnetic Research Symposium (PIERS) 2016: 1686-1686.  DOI: 10.1109/PIERS.2016.7734762.
 
- Castelletto  S, Boretti A. Noble metal nanoparticles in thin film solar cells. Nanosci  Nanotechnol Lett 2013; 5(1): 36-40. DOI:  10.1166/NNL.2013.1396.
 
- Gulomov  J, et al. Studying the effect of light incidence angle on photoelectric  parameters of solar cells by simulation. Int J Renew Energy Dev 2021; 10(4):  731-736. DOI:  10.14710/ijred.2021.36277.
 
- Zhang  JJ, Qu ZG, Zhang JF, Maharjan A. A three-dimensional numerical study of coupled  photothermal and photoelectrical processes for plasmonic solar cells with  nanoparticles. Renew Energy 2021; 165: 278-287. DOI: 10.1016/j.renene.2020.11.010.
 
- Eremin  YA, Lopushenko VV. Numerical analysis of the functional properties of the 3d resonator of a plasmon nanolaser with  regard to nonlocality and prism presence via the discrete sources method.  Computer Optics 2021; 45(3): 331-339. DOI:  10.18287/2412-6179-CO-790.
 
- Butt  MA, Khonina SN, Kazanskiy NL. An array of nano-dots loaded MIM square ring  resonator with enhanced sensitivity at NIR wavelength range. Optik 2020; 202:  163655. DOI:  10.1016/j.ijleo.2019.163655.
 
- Abduvohidov MK, Aliev R, Gulomov J.  A study of the influence of the base thickness on photoelectric parameters of  silicon solar cells with the new TCAD algorithms. Scientific and Technical  Journal of Information Technologies, Mechanics and Optics 2021; 21(5): 774-784.  doi:  10.17586/2226-1494-2021-21-5-774-784.
      
- Yakubovsky  DI, et al. Ultrathin and ultrasmooth gold films on monolayer MoS2. Adv Mater  Interfaces 2019; 6(13): 1900196. DOI:  10.1002/ADMI.201900196.
 
- Rosenblatt  G, Simkhovich B, Bartal G, Orenstein M. Nonmodal plasmonics: Controlling the  forced optical response of nanostructures. Phys Rev X 2020; 10(1): 011071. DOI: 10.1103/PhysRevX.10.011071.
 
- Khoa NT, Kim SW, Yoo  DH, Kim EJ, Hahn SH. Size-dependent work function and catalytic performance of  gold nanoparticles decorated graphene oxide sheets. Appl Catal A-Gen 2014; 469:  159-164. DOI:  10.1016/j.apcata.2013.08.046.
 
- Devi  LB, et al. A numerical simulation and modeling of poisson equation for solar  cell in 2 dimensions. IOP Conference Series: Earth and Environmental Science  2018; 173(1): 012001. DOI:  10.1088/1755-1315/173/1/012001.
 
- Stem N, Ramos  CAS, Cid M. Open-circuit voltages: Theoretical and experimental optimizations  of rear passivated silicon solar cells using Fz and Cz wafers. Solid State  Electron 2010; 54(3): 221-225. DOI:  10.1016/j.sse.2009.09.002.
 
- Reineck  P, Brick D, Mulvaney P, Bach   U. Plasmonic hot electron  solar cells: The effect of nanoparticle size on quantum efficiency. J Phys Chem  Lett 2016; 7(20): 4137-4141. DOI:  10.1021/acs.jpclett.6b01884.
 
- Baffou  G, Quidant R, Girard C. Heat generation in plasmonic nanostructures: Influence  of morphology. Appl Phys Lett 2009; 94(15): 153109. DOI: 10.1063/1.3116645.
 
- Chander  N, et al. Size and concentration effects of gold nanoparticles on optical and  electrical properties of plasmonic dye sensitized solar cells. Solar Energy  2014; 109: 11-23. DOI:  10.1016/j.solener.2014.08.011.
 
- Wang  L, Kafshgari MH, Meunier M. Optical properties and applications of  plasmonic-metal nanoparticles. Adv Funct Mater 2020; 30(51): 2005400. DOI: 10.1002/adfm.202005400.
 
- Reineck  P, Brick D, Mulvaney P, Bach   U. Plasmonic hot electron  solar cells: the effect of nanoparticle size on quantum efficiency. J Phys Chem  Lett 2016; 7(20): 4137-4141. DOI:  10.1021/acs.jpclett.6b01884.
 
- Notarianni  M, Vernon K, Chou A, Aljada M, Liu J, Motta N. Plasmonic effect of gold  nanoparticles in organic solar cells. Solar Energy 2014; 106: 23-37. DOI: 10.1016/j.solener.2013.09.026.
 
- Pudasaini  PR, Ayon AA. Nanostructured thin film silicon solar cells efficiency  improvement using gold nanoparticles. Phys Status Solidi A 2012; 209(8): 1475-1480.  DOI: 10.1002/pssa.201228022.
 
- Jia  B, Gu M, Fahim N, Zhang Y, Shi Z, Ouyang Z. Efficiency enhancement of  screen-printed multicrystalline silicon solar cells by integrating gold  nanoparticles via a dip coating process. Opt Mater Express 2012; 2(2): 190-204.  DOI: 10.1364/OME.2.000190.
 
- Bläsi  B, Rüdiger M, Peters M, Platzer W. Electro – optical simulation of diffraction  in solar cells. Opt Express 2010; 18(S4): A584-A593. DOI: 10.1364/OE.18.00A584.
 
- Day  J, Senthilarasu S, Mallick TK. Improving spectral modification for applications  in solar cells: A review. Renew Energy 2019; 132: 186-205. DOI: 10.1016/j.renene.2018.07.101.
 
- Lombardi  A, et al. Fano interference in the optical absorption of an individual  gold-silver nanodimer. Nano Lett 2016; 16(10): 6311-6316. DOI: 10.1021/acs.nanolett.6b02680.
 
- Ghosh  H, et al. Light-harvesting properties of embedded tin oxide nanoparticles for  partial rear contact silicon solar cells. Plasmonics 2016; 12(6): 1761-1772. DOI: 10.1007/S11468-016-0443-7.
 
- Hossain  MK, Mukhaimer AW, Drmosh QA. Spectral absorption depth profile: A step forward  to plasmonic solar cell design. J Electron Mater 2016; 45(11): 5695-5702. DOI: 10.1007/S11664-016-4808-7.       
      
- Atwater HA, Polman A. Plasmonics for improved photovoltaic  devices. Nat Mater 2010; 9(3): 205-213. DOI:  10.1038/nmat2629.
        
        
      
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20