(46-5) 08 * << * >> * Russian * English * Content * All Issues

Calculation of quantum characteristics based on the classical solution of the diffraction problem in a resonator with a dielectric plate
S.I. Kharitonov 1,2, N.L. Kazanskiy 1,2, S.G. Volotovsky 1, S.N. Khonina 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 974 kB

DOI: 10.18287/2412-6179-CO-1174

Pages: 741-751.

Full text of article: Russian language.

Abstract:
The work is devoted to the development of the quantum theory of diffractive optical elements. Aspects of quantum optics are considered by the example of light diffraction from a dielectric plate in a resonator. The paper shows the connection between the classical and quantum solution of the problem of diffraction by a dielectric plate. Expressions are obtained for the eigenmodes of such a resonator, as well as for the operators of the vector magnetic potential and the electric field strength. The method proposed in this paper can be easily extended to dielectric plates with a diffractive microrelief, that is, to diffractive optical elements.

Keywords:
modes of a resonator with a dielectric plate, field quantization, field quantum characteristics.

Citation:
Kharitonov SI, Kazanskiy NL, Volotovskiy SG, Khonina SN. Calculation of quantum characteristics based on the classical solution of the diffraction problem in a resonator with a di-electric plate. Computer Optics 2022; 46(5): 741-751. DOI: 10.18287/2412-6179-CO-1174.

Acknowledgements:
This work was financially supported by the RF Ministry of Science and Higher Education within the state project of the FSRC "Crystallography and Photonics RAS" (agreement No. 007-GZ/Ch3363/26) in part of analyzing the light diffraction in a resonator with a dielectric plate, and within the framework of the Development Program of Samara University for 2021–2030 within the framework of the "Priority-2030" program with the support of the Government of the Samara Region in part of developing a quantum theory of diffractive optical elements.

References:

  1. Martin V, Brito JP, Escribano C, Menchetti M, White C, Lord A, Wissel F, Gunkel M, Gavignet P, Genay N, Le Moult O, Abellán C, Manzalini A, Pastor-Perales A, López V, López D. Quantum technologies in the telecommunications industry. EPJ Quantum Technol 2021; 8: 19. DOI: 10.1140/epjqt/s40507-021-00108-9.
  2. Bennett CH, Bessette F, Brassard G, Salvail L, Smolin J. Experimental quantum cryptography. J Cryptol 1992; 5(1): 3-28. DOI: 10.1007/BF00191318.
  3. Gisin N, Ribordy G, Tittel W, Zbinden H. Quantum cryptography. Rev Mod Phys 2002; 74(1): 145-195. DOI: 10.1103/RevModPhys.74.145.
  4. Dušek M, Lütkenhaus N, Hendrych M. Quantum cryptography. In Book: Wolf E, ed. Progress in optics. Vol 49. Ch 5. Amsterdam, Oxford: Elsevier; 2006: 381-454. DOI: 10.1016/S0079-6638(06)49005-3.
  5. Klauder JR, Sudarshan ECG. Fundamentals of quantum optics. New York: W A Benjamin Inc; 1968.
  6. Klyshko D. Physical foundations of quantum electronics. Singapore: World Scientific Publisher Co Ptc Ltd; 2011. ISBN: 978-981-4324-50-2.
  7. Scully MO, Zubairy MS. Quantum optics. Cambridge: Cambridge University Press; 1997. ISBN: 978-0-521-43458-4.
  8. Mandel L, Wolf E. Optical coherence and quantum optics. Cambridge: Cambridge University Press; 1995. ISBN: 978-0-521-41711-2.
  9. Kilin SYa. Quantum optics. Fields and their detection [In Russian]. Moscow: “Editorial URSS” Publisher; 2003. ISBN: 5-354-00442-X.
  10. Belinsky AV, Lapshin VB. specific features of interference of photons and other quantum particles. Moscow University Physics Bulletin 2016; 71(3): 258-265. DOI: 10.3103/S0027134916030036.
  11. Belinsky AV, Zhukovskiy AK. The state vector of a quantum system: Mathematical fiction or physical reality, Moscow University Physics Bulletin 2016; 71(3): 253-257. DOI: 10.3103/S0027134916030024.
  12. Belinsky AV, Vladimirov YuS. Relational-statistical nature of the regularities of quantum theory [In Russian]. Space, Time and Fundamental Interactions 2016: 1: 32-42.
  13. Rastorguev AA, Kharitonov SI, Kazanskiy NL. Modeling of image formation with a space-borne Offner hyperspectrometer. Computer Optics 2020; 44(1): 12-21. DOI: 10.18287/2412-6179-CO-644.
  14. Kazanskiy N, Ivliev N, Podlipnov V, Skidanov R. An airborne Offner imaging hyperspectrometer with radially-fastened primary elements. Sensors 2020; 20(12): 3411. DOI: 10.3390/s20123411.
  15. Rastorguev AA, Kharitonov SI, Kazanskiy NL. Numerical simulation of the performance of a spaceborne Offner imaging hyperspectrometer in the wave optics approximation. Computer Optics 2022; 46(1): 56-64. DOI: 10.18287/2412-6179-CO-1034.
  16. Anshakov GP, Salmin VV, Peresypkin KV, Chetverikov AS, Tkachenko IS. Design and control of the diffraction optical system for the prospective project of the observation spacecraft. J Phys Conf Ser 2018; 1096(1): 012076. DOI: 10.1088/1742-6596/1096/1/012076.
  17. Wright LG, Christodoulides DN, Wise FW. Controllable spatiotemporal nonlinear effects in multimode fibres. Nat Photonics 2015; 9(5): 306-310. DOI: 10.1038/nphoton.2015.61.
  18. Bevzenko IG. Investigation of the behavior of ultrashort pulses in multiwire structures with inhomogeneous dielectric filling [In Russian]. Computing, Telecommunications and Control 2016; 252(4): 7-18. DOI: 10.5862/JCSTCS.252.1.
  19. Kharitonov SI, Volotovsky SG, Khonina SN, Kazanskiy NL. Propagation of electromagnetic pulses and calculation of dynamic invariants in a waveguide with a convex shell. Computer Optics 2018; 42(6): 947-958.DOI: 10.18287/2412-6179-2018-42-6-947-958.
  20. Kharitonov SI, Volotovsky SG, Khonina SN. Calculation of the angular momentum of an electromagnetic field inside a waveguide with absolutely conducting walls. Computer Optics 2018; 42(4): 588-605. DOI: 10.18287/2412-6179-2018-42-4-588-605.
  21. Caron CFR, Potvliege RM. Free-space propagation of ultrashort pulses: space-time couplings in Gaussian pulse beams. J Mod Opt 1999; 46(13): 1881-1891. DOI: 10.1080/09500349908231378.
  22. Feng S. Winful HG. Spatiotemporal structure of isodiffracting ultrashort electromagnetic pulses. Phys Rev E 2000; 61(1): 862-873. DOI: 10.1103/PhysRevE.61.862.
  23. Belgiorno F, Cacciatori SL, Clerici M, Gorini V, Ortenzi G, Rizzi L, Rubino E, Sala VG, Faccio D. Hawking radiation from ultrashort laser pulse filaments. Phys Rev Lett 2010; 105(20): 203901. DOI: 10.1103/PhysRevLett.105.203901.
  24. Khonina SN, Golub I. Tighter focus for ultrashort pulse vector light beams: change of the relative contribution of different field components to the focal spot upon pulse shortening. J Opt Soc Am A 2018; 35(6): 985-991. DOI: 10.1364/JOSAA.35.000985.
  25. Slavík R, Park Y, Kulishov M, Azaña J. Terahertz-bandwidth high-order temporal differentiators based on phase-shifted long-period fiber gratings. Opt Lett 2009; 34(20): 3116-3118. DOI: 10.1364/OL.34.003116.
  26. Preciado MA, Shu X, Harper P, Sugden K. Experimental demonstration of an optical differentiator based on a fiber Bragg grating in transmission. Opt Lett 2013; 38(6): 917-919. DOI: 10.1364/OL.38.000917.
  27. Bykov DA, Doskolovich LL, Golovastikov NV, Soifer VA. Time-domain differentiation of optical pulses in reflection and in transmission using the same resonant grating. J Opt 2013; 15(10): 105703. DOI: 10.1088/2040-8978/15/10/105703.
  28. Liu F, Wang T, Qiang L, Ye T, Zhang Z, Qiu M, Su Y. Compact optical temporal differentiator based on silicon microring resonator. Opt Express 2008; 16(20): 15880-15886. DOI: 10.1364/OE.16.015880.
  29. Kazanskiy NL, Serafimovich PG, Khonina SN. Use of photonic crystal cavities for temporal differentiation of optical signals. Opt Lett 2013; 38(7): 1149-1151. DOI: 10.1364/OL.38.001149.
  30. Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N. Performing mathematical operations with metamaterials. Science 2014; 343: 160-163. DOI: 10.1126/science.1242818.
  31. Pors A, Nielsen MG, Bozhevolnyi SI. Analog computing using reflective plasmonic metasurfaces. Nano Lett 2015; 15(1): 791-797. DOI: 10.1021/nl5047297.
  32. Kharitonov SI, Khonina SN, Kazanskiy NL. Field quantization in a waveguide with freeform cladding. Proc SPIE 2021; 11793: 117930R. DOI: 10.1117/12.2593197.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20