(46-6) 04 * << * >> * Russian * English * Content * All Issues

Measurement of the radius of curvature of a spherical surface based on the transport-of-intensity equation
N.G. Stsepuro 1, M.S. Kovalev 1, G.K. Krasin 1, I.V. Gritsenko 1, A.V. Bobkov 1,2, S.I. Kudryashov 3

Bauman Moscow State Technical University,
105005, Moscow, Russia, 2nd Baumanskaya st. 5/1;
R&D Geofizika-Cosmos, 107497, Moscow, Russia, Irkutskaya st., 11/1;
Lebedev Physical Institute, 119991, Moscow, Russia, Leninskiy Prospekt, 53

 PDF, 1357 kB

DOI: 10.18287/2412-6179-CO-1159

Pages: 877-883.

Full text of article: Russian language.

Abstract:
The transport-of-intensity equation provides a new non-interferometric and non-iterative access to quantitative information about the phase of a light wave by measuring intensity distributions. This equation can be used to implement a simple and accurate spatial phase measurement for optical testing of spherical surfaces. The method requires only a CMOS camera, which records transverse field intensity distributions in several planes. Processing of experimental measurements with specialized software allows one to reconstruct the value of the radius of curvature of the spherical surface under test with high accuracy. The method is compared with measurements made by an interferometer, showing the difference between the values of the surface radius of curvature to be 0.01 % or less and indicating good agreement of the results.

Keywords:
laser beam; wavefront; measurement radius of curvature of a spherical surface; phase distortions; transport-of-intensity equation.

Citation:
Stsepuro NG, Kovalev MS, Krasin GK, Gritsenko IV, Bobkov AV, Kudryashov SI. Measurement of the radius of curvature of a spherical surface based on the transport-of-intensity equation. Computer Optics 2022; 46(6): 877-883. DOI: 10.18287/2412-6179-CO-1159.

Acknowledgements:
This work was supported by the Russian Science Foundation (Project No. 20-79-00264) and Russian Foundation for Basic Research (Project No. 20-32-90161).

References:

  1. Torre A. Linear ray and wave optics in phase space. 1st ed. Elsevier Science; 2005.
  2. Allen RL, Mills DW. Signal analysis: Time, frequency, scale, and structure. 1st ed. Wiley-IEEE Press; 2003.
  3. Ruchka PA, Galkin ML, Kovalev MS, Krasin GK, Stsepuro NG, Odinokov SB. On the possibilities of encoding digital images using fractional Fourier transform. Optical Memory and Neural Networks 2019; 28: 252-261.
  4. Gritsenko IV, Kovalev MS, Stsepuro NG, GulinaYuS, Krasin GK, Gonchukov SA, Kudryashov SI. The optical refractometry using transport-of-intensity equation. Laser Phys Lett 2022; 19(7): 076201.
  5. Wolf E. Coherence properties of partially polarized electromagnetic radiation. Nuovo Cim 1959; 13: 1165-1181.
  6. Walker JG. The phase retrieval problem. J Mod Opt 2010; 28(6): 735-738.
  7. Schiebelbein A, Pedrini G. Lensless phase imaging microscopy using multiple intensity diffraction patterns obtained under coherent and partially coherent illumination. Appl Opt 2022; 61(5): B271-B278.
  8. LR, Quach H, Choi H, Kim DW. Infinite deflectometry enabling 2π-steradian measurement range. Opt Express 2019; 27(5): 7602-7615.
  9. Pan S, Ma J, Zhu R, Ba T, Zuo C, Chen F, Dou J, Wei С, Zhou W. Real-time complex amplitude reconstruction method for beam quality M2 factor measurement. Opt Express 2017; 25(17): 20142-20155.
  10. Kovalev M, Gritsenko I, Stsepuro N, Nosov P, Krasin G, Kudryashov S. Reconstructing the spatial parameters of a laser beam using the transport-of-intensity equation. Sensors 2022; 22(5): 1765.
  11. Li WS, Chen CW, Lin KF, Chen HR, Tsai CY, Chen CH, Hsieh WF. Phase retrieval by using the transport-of-intensity equation with Hilbert transform. Opt Lett 2016; 41(7): 1616-1619.
  12. Zuo C, Chen Q, Asundi A. Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform. Opt Express 2014; 22(8): 9220-9244.
  13. Geng J. Structured-light 3D surface imaging: a tutorial. Adv Opt Photon 2011; 3(2): 128-160.
  14. Chen X, Kandel ME, Popescu G. Spatial light interference microscopy: principle and applications to biomedicine. Adv Opt Photon 2021; 13(2): 353-425.
  15. Krasin G, Kovalev M, Stsepuro N, Ruchka P, Odinokov S. Lensless scheme for measuring laser aberrations based on computer-generated holograms. Sensors 2020; 20(15): 4310.
  16. Zheng G, Shen C, Jiang S, Song P, Yang C. Concept, implementations and applications of Fourier ptychography. Nat Rev Phys 2021; 3: 207-223.
  17. Baek Y, Park Y. Intensity-based holographic imaging via space-domain Kramers–Kronig relations. Nat Photonics 2021; 15: 354-360.
  18. Dorrer C, Zuegel JD. Optical testing using the transport-of-intensity equation. Opt Express 2007; 15(12): 7165-7175.
  19. Popov NL, Artyukov IA, Vinogradov AV, Protopopov VV. Wave packet in the phase problem in optics and ptychography. Phys Usp 2020; 63(5): 766-774.
  20. Schmidt OA, Schulze C, Flamm D, Brüning R, Kaiser T, Schröter S, Duparré M. Real-time determination of laser beam quality by modal decomposition. Opt Express 2011; 19(7): 6741-6748.
  21. Vaveliuk P, Ruiz B, Lencina A. Limits of the paraxial approximation in laser beams. Opt Lett 2007; 32(8): 927-929.
  22. Hirleman ED, Stevenson WH. Intensity distribution properties of a Gaussian laser beam focus. Appl Opt 1978; 17(21): 3496-3499.
  23. Nosov PA, Piskunov DE, Shirankov AF. Combined laser variosystems paraxial design for longitudinal movement of a Gaussian beam waist. Opt Express 2020; 28(4): 5105-5118.
  24. Forkner JF. Computing illumination-bundle focusing by lens systems. Proc SPIE 1991; 1354: 210-215.
  25. Teague MR. Deterministic phase retrieval: a Green’s function solution. J Opt Soc Am 1983; 73(11): 1434-1441.
  26. Allen LJ, Oxley MP. Phase retrieval from series of images obtained by defocus variation. Opt Commun 2001; 199(1-4): 65-75.
  27. Gritsenko I, Kovalev M, Krasin G, Konoplyov M, Stsepuro N. Computational method for wavefront sensing based on transport-of-intensity equation. Photonics 2021; 8(6): 177.
  28. Lasers and laser-related equipment – Test methods for laser beam widths, divergence angles and beam propagation ratios – Part 2: General astigmatic beams. 2005. Source: <https://www.iso.org/standard/33626.html>.
  29. Nosov PA, Shirankov AF, Grigoryants AG, Tret'yakov RS. Investigation of the spatial structure of a high-power fiber laser beam. J Phys Conf Ser 2015; 584(1): 012006.
  30. Stroock DW. Probability theory: an analytic view. 2nd ed. Cambridge University Press; 2011.
  31. Lu Z, Cai L. Paraxial focal length measurement method with a simple apparatus. Opt Express 2019; 27(3): 2044-2055.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20