(46-6) 03 * << * >> * Russian * English * Content * All Issues

Double Laguerre-Gaussian beams
V.V. Kotlyar 1,2, E.G. Abramochkin 3, A.A. Kovalev 1,2, A.A. Savelyeva 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34;
Lebedev Physical Institute, 443011, Samara, Russia, Novo-Sadovaya st. 221

 PDF, 897 kB

DOI: 10.18287/2412-6179-CO-1177

Pages: 872-876.

Full text of article: Russian language.

Abstract:
We show here that the product of two Laguerre-Gaussian (LG) beams, i.e. double LG beams (dLG), can be represented as finite superposition of conventional LG beams with certain coeffi-cients that are expressed via zero-argument Jacobi polynomials. This allows obtaining an explicit expression for the complex amplitude of the dLG beams in the Fresnel diffraction zone. Generally, such beams do not retain their structure, changing shape upon free-space propagation. However, if both LG beams are of the same order, we obtain a special case of a "squared" LG beam, which is Fourier-invariant. Another special case of the dLG beams is obtained when the azimuthal indices of the Laguerre polynomials are equal to n – m and n + m. For such a beam, an explicit expression is obtained for the complex amplitude in the Fourier plane. We show that if the lower indices of the constituent LG beams are the same, such a double LG beam is also Fourier-invariant. Similar to conventional LG beams, the product of LG beams can be used for optical data transmission, since they are characterized by azimuthal orthogonality and carry an orbital angular momentum equal to the topological charge.

Keywords:
Laguerre-Gaussian beam, product of complex amplitudes, Fourier-invariant beam, topological charge.

Citation:
Kotlyar VV, Abramochkin EG, Kovalev AA, Savelyeva AA. Double Laguerre-Gaussian beams. Computer Optics 2022; 46(6): 872-876. DOI: 10.18287/2412-6179-CO-1177.

Acknowledgements:
This work was funded by the Russian Science Foundation under Project No. 22-12-00137.

References:

  1. Kogelnik H, Li T. Laser beams and resonators. Appl Opt 1966; 5(10): 1550-1567. DOI: 10.1364/AO.5.001550.
  2. Zauderer E. Complex argument Hermite-Gaussian and Laguerre-Gaussian beams. J Opt Soc Am A 1986; 3(4): 465-469. DOI: 10.1364/JOSAA.3.000465.
  3. Wünsche A. Generalized Gaussian beam solutions of paraxial optics and their connection to a hidden symmetry. J Opt Soc Am A 1989; 6(9): 1320-1329. DOI: 10.1364/JOSAA.6.001320.
  4. Abramochkin E, Volostnikov V. Beam transformations and nontransformed beams. Opt Commun 1991; 83(1-2): 123-135. DOI: 10.1016/0030-4018(91)90534-K.
  5. Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys Rev A 1992; 45(11): 8185-8189. DOI: 10.1103/PhysRevA.45.8185.
  6. Abramochkin EG, Volostnikov VG. Generalized Gaussian beams. J Opt A–Pure Appl Opt 2004; 6(5): S157-S161. DOI: 10.1088/1464-4258/6/5/001.
  7. Abramochkin E, Razueva E, Volostnikov V. General astigmatic transform of Hermite–Laguerre–Gaussian beams. J Opt Soc Am A 2010; 27(11): 2506-2513. DOI: 10.1364/JOSAA.27.002506.
  8. Zhou G, Ru G. Orbital angular momentum density of an elegant Laguerre-Gaussian beam. Prog Electromagn Res 2013; 141: 751-768. DOI: 10.2528/PIER13051608.
  9. Kotlyar VV, Khonina SN, Almazov AA, Soifer VA, Jefimovs K, Turunen J. Elliptic Laguerre-Gaussian beams. J Opt Soc Am A 2006; 23(1): 43-56. DOI: 10.1364/JOSAA.23.000043.
  10. Mendoza-Hernández J, Arroyo-Carrasco ML, Iturbe-Castillo MD, Chávez-Cerda S. Laguerre–Gauss beams versus Bessel beams showdown: peer comparison. Opt Lett 2015; 40(16): 3739-3742. DOI: 10.1364/OL.40.003739.
  11. Wang M, Ma Y, Sheng Q, He X, Liu J, Shi W, Yao J, Omatsu T. Laguerre-Gaussian beam generation via enhanced intracavity spherical aberration. Opt Express 2021; 29(17): 27783-27790. DOI: 10.1364/OE.436110.
  12. Rafayelyan M, Brasselet E. Laguerre–Gaussian modal q-plates. Opt Lett 2017; 42(10): 1966-1969. DOI: 10.1364/OL.42.001966.
  13. Mao H, Ren Y-H, Yu Y, Yu Z, Sun X, Zhang S, Wong KKY. Broadband meta-converters for multiple Laguerre-Gaussian modes. Photon Res 2021; 9(9): 1689-1698. DOI: 10.1364/PRJ.423344.
  14. Liang G, Wang Q. Controllable conversion between Hermite Gaussian and Laguerre Gaussian modes due to cross phase. Opt Express 2019; 27(8): 10684-10691. DOI: 10.1364/OE.27.010684.
  15. Longman A, Fedosejevs R. Optimal Laguerre–Gaussian modes for high-intensity optical vortices. J Opt Soc Am A 2020; 37(5): 841-848. DOI: 10.1364/JOSAA.389031.
  16. Dong M, Lu X-Y, Zhao C, Cai Y, Yang Y. Measuring topological charge of partially coherent elegant Laguerre-Gaussian beam. Opt Express 2018; 26(25): 33035-33043. DOI: 10.1364/OE.26.033035.
  17. Kovalev AA, Kotlyar VV, Porfirev AP. Asymmetric Laguerre-Gaussian beams. Phys Rev A 2016; 93(6): 063858. DOI: 10.1103/PhysRevA.93.063858.
  18. Hsieh YH, Lai YH, Hsieh MX, Huang KF, Chen YF. Generating high-power asymmetrical Laguerre-Gaussian modes and exploring topological charges distribution. Opt Express 2018; 26(24): 31738-31749. DOI: 10.1364/OE.26.031738.
  19. Abad GGM, Mahmoudi M. Laguerre-Gaussian modes generated vector beam via nonlinear magneto-optical rotation. Sci Rep 2021; 11: 5972. DOI: 10.1038/s41598-021-85249-8.
  20. Huang S, Miao Z, He C, Pang F, Li Y, Wang T. Composite vortex beams by coaxial superposition of Laguerre–Gaussian beams. Opt Lasers Eng 2016; 78: 132-139. DOI: 10.1016/j.optlaseng.2015.10.008.
  21. Chen Y, Liu L, Wang F, Zhao C, Cai Y. Elliptical Laguerre-Gaussian correlated Schell-model beam. Opt Express 2014; 22(11): 13975-13987. DOI: 10.1364/OE.22.013975.
  22. Pang K, Liu C, Xie G, Ren Y, Zhao Z, Zhang R, Cao Y, Zhao J, Song H, Song H, Li L, Willner AN, Tur M, Boyd RW, Willner AE. Demonstration of a 10  Mbit/s quantum communication link by encoding data on two Laguerre–Gaussian modes with different radial indices. Opt Lett 2018; 43(22): 5639-5642. DOI: 10.1364/OL.43.005639.
  23. Doster T, Watnik AT. Laguerre–Gauss and Bessel–Gauss beams propagation through turbulence: analysis of channel efficiency. Appl Opt 2016; 55(36): 10239-10246. DOI: 10.1364/AO.55.010239.
  24. Zeng J, Liu X, Zhao C, Wang F, Gbur G, Cai Y. Spiral spectrum of a Laguerre-Gaussian beam propagating in anisotropic non-Kolmogorov turbulent atmosphere along horizontal path. Opt Express 2019; 27(18): 25342-25356. DOI: 10.1364/OE.27.025342.
  25. Cox MA, Maqondo L, Kara R, Milione G, Cheng L, Forbes A. The resilience of Hermite– and Laguerre–Gaussian modes in turbulence. J Lightw Technol 2019; 37(16): 3911-3917. DOI: 10.1109/JLT.2019.2905630.
  26. Otsu T, Ando T, Takiguchi Y, Ohtake Y, Toyoda H, Itoh H. Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam. Sci Rep 2014; 4(1): 4579. DOI: 10.1038/srep04579.
  27. Peshkov AA, Seipt D, Surzhykov A, Fritzsche S. Photoexcitation of atoms by Laguerre-Gaussian beams. Phys Rev A 2017; 96(2): 023407. DOI: 10.1103/PhysRevA.96.023407.
  28. Prudnikov AP, Brychkov YA, Marichev OI. Integrals and series. Volume 2: Special functions. New York: Gordon and Breach; 1986. ISBN: 2-88124-097-6.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20