(47-1) 06 * << * >> * Russian * English * Content * All Issues

RGB color camera for dynamical measurements of high temperature distribution on a surface of the heated solid
K.M. Bulatov 1, P.V. Zinin 1, A.A. Bykov 1, I.V. Malykhina 1

Scientific-Technological Center of Unique Instrumentation,
117342, Moscow, Russia, Butlerova str. 15

 PDF, 1424 kB

DOI: 10.18287/2412-6179-CO-1125

Pages: 48-52.

Full text of article: English language.

Abstract:
In this report we describe a fast 3-color method of the measurement of temperature distributions on a surface of a heated solid using a RGB color camera with a high frame rate (100 images per second). Statistical error the RGB method is not high, and do not exceed around 5.5% which is surprising taking in to account the number of the measurements at each pixel. Comparison of the results of the temperature measurements on a tungsten plate heated by infra-red laser radiation and conducted with this technique and those obtained with the acousto-optical tunable filter technique demonstrate that error of the temperature measured by 3-color method is only two times as high as that of the tandem acousto-optic filter technique method.

Keywords:
RGB camera, temperature measurement, spectral imaging.

Citation:
Bulatov KM, Zinin PV, Bykov AA, Malykhina IV. RGB color camera for dynamical measurements of high temperature distribution on a surface of the heated solid. Computer Optics 2023; 47(1): 48-52. DOI: 10.18287/2412-6179-CO-1125.

Acknowledgements:
This work was performed using the Unique Scientific Instrument 'Laser heating at diamond anvil cell'[http://ckp-rf.ru/usu/507563/].

References:

  1. Bulatov KM, Mantrova YV, Bykov AA, Gaponov MI, Zinin PV, Machikhin AS, Troyan IA, Batshev VI, Kutuza IB. Multi-spectral image processing for the measurement of a spatial temperature distribution on the surface of a laser-heated microscopic object. Computer Optics 2017; 41(6): 864-868. DOI: 10.18287/2412-6179-2017-41-6-864-868.
  2. Zinin PV, et al. Measurement of the temperature distribution on the surface of the laser heated specimen in a diamond anvil cell system by the tandem imaging acousto-optical filter. High Press Res 2019; 39(1): 131-149.
  3. Machikhin AS, Shurygin AV, Pozhar VE. Spatial and spectral calibration of an acousto-optical spectrometer. Instrum Exp Tech 2016; 59(5): 692-697.
  4. Machikhin AS, et al. Imaging system based on a tandem acousto-optical tunable filter for in situ measurements of the high temperature distribution. Opt Lett 2016; 41(5): 901-904.
  5. Magunov AN. Spectral pyrometry (Review). Instrum Exp Tech 2009; 52(4): 451-472.
  6. Heinz DL, Jeanloz R. Temperature measurements in the laser-heated diamond cell. In: Manghnani MH, Syono Y, eds. High-pressure research in mineral physics: A volume in honor of Syun-iti Akimoto. Washington DC: American Geophysical Union; 1987: 113-127.
  7. Borbély Á, Sámson Á, Schanda J. The concept of correlated colour temperature revisited. Color Res Appl 2001; 26(6): 450-457.
  8. McCamy CS. Correlated color temperature as an explicit function of chromaticity coordinates. Color Res Appl 1992; 17(2): 142-144.
  9. Botero JS, Lopez FE, Vargas JF. Characterization of photodectors using a monochromator and a broadband light source in the xyz color space. Int J Smart Sens Intell Syst 2016; 9(2): 752-764.
  10. Zinin P, et al. Bonding, elastic and vibrational properties in low and high pressure synthesized diamond-like BCx phases. J Phys–Conf Ser 2017; 950: 042050.
  11. Glushkov DO, Egorov RI, Klepikov DM. High-speed contactless measurements of temperature evolution during ignition and combustion of coal-based fuel pellets. Int J Heat Mass Transf 2021; 175: 121359.
  12. Densmore JM, et al. High-speed digital color imaging pyrometry. Appl Opt 2011; 50(17): 2659-2665.
  13. Valencia J-SB, Giraldo F-EL, Bonilla J-FV. Calibration method for Correlated Color Temperature (CCT) measurement using RGB color sensors. Symposium of Signals, Images and Artificial Vision 2013: 1-6.
  14. Magunov AN, Zakharov AO, Lapshinov BA. Measurements of nonstationary temperatures by the spectral pyrometry method. Instrum Exp Tech 2012; 55(1): 134-139.
  15. Magunov AN. The choice of a spectral interval within which a heated opaque object radiates as a gray body. Instrum Exp Tech 2010; 53(6): 910-914.
  16. Thorlab. 2020. Source: <https://www.thorlabs.com/ newgrouppage9.cfm?objectgroup_id=259>.
  17. Draper NR, Smith H. Applied regression analysis. New York: Wiley; 1966: ix, 407.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20