(47-3) 02 * << * >> * Russian * English * Content * All Issues

Huge spikes and dips of the orbital angular momentum in structured Laguerre-Gaussian beams resistant to simple astigmatism
A.V. Volyar 1, E.G. Abramochkin 2, Ya.E. Akimova 1, M.V. Bretsko 1

Physics and Technology Institute of V.I. Vernadsky Crimean Federal University,
295007, Simferopol, Republic of Crimea, Russia, Academician Vernadsky 4;
Lebedev Physical Institute, 443034, Samara, Russia, Novo-Sadovaya 221

 PDF, 1873 kB

DOI: 10.18287/2412-6179-CO-1243

Pages: 350-360.

Full text of article: Russian language.

Abstract:
The article investigated conditions for shaping astigmatic-invariant structured Laguerre-Gaussian (LG) beams in the case of simple astigmatism. We have theoretically and experimentally confirmed that the conditions of astigmatic invariance are that the q-phase parameter of the structured LG (sLG) beam is equal to the arctangent of the ratio of the Rayleigh length z0 to the focal length fcyl of a cylindrical lens for a single amplitude parameter of epsilon;=1. For the rest amplitude parameter values, epsilon;NotEqual;1, the astigmatic invariance condition is set by the equality of the orbital angular momenta (OAM) of structured sLG and astigmatic-invariant sLG (asLG) beams. We have also found sharp spikes and dips of the OAM in astigmatic asLG beams in the region where OAM turns into zero. The height and depth of these spikes and dips significantly exceed the maximum and minimum OAM values in the conventional structured sLG beams. It has been shown that the occurrence of spikes and dips of the OAM is caused by a radical restructuring of the LG mode spectra in the form of their strong ordering. Theoretical calculations, accompanied by a computer simulation, and an experiment agree well with each other

Keywords:
structural stability, topological charge, orbital angular momentum, vortex spectrum.

Citation:
Volyar AV, Abramochkin EG, Akimova YaE, Bretsko MV. Huge spikes and dips of the orbital angular momentum in structured Laguerre-Gaussian beams resistant to simple astigmatism. Computer Optics 2023; 47(3): 350-360. DOI: 10.18287/2412-6179-CO-1243.

Acknowledgements:
The work was supported by the Russian Foundation for Basic Research under project No. 20-37-90066 ("Experiment" Section) and project No. 20-37-90068 ("Sharp spikes and dips of OAM. Asymptotics" Section).

References:

  1. Forbes A, de Oliveira M, Dennis MR. Structured light. Nature Photon 2021; 15(4): 253-262. DOI: 10.1038/s41566-021-00780-4.
  2. Shen Y, Yang X, Naidoo D, Fu X, Forbes A. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser. Optica 2020; 7: 820-831. DOI: 10.1364/OPTICA.382994.
  3. Kotlyar VV, Kovalev AA, Porfirev AP. Vortex laser beams. Boca Raton: CRC Press; 2018. ISBN: 978-1-138-54211-2.
  4. Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl 2019; 8: 90. DOI: 10.1038/s41377-019-0194-2.
  5. Wang J. Advances in communications using optical vortices. Photon Res 2016; 4: B14-B28. DOI: 10.1364/PRJ.4.000B14.
  6. Woerdemann M, Alpmann C, Esseling M, Denz C. Advanced optical trapping by complex beam shaping. Laser Photon Rev 2013; 7: 839-854. DOI: 10.1002/lpor.201200058.
  7. Fickler R, Lapkiewicz R, Huber M, Lavery MPJ, Padgett MJ, Zeilinger A. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information. Nat Commun 2014; 5: 4502. DOI: 10.1038/ncomms5502.
  8. Abramochkin EG, Volostnikov VG. Generalized Gaussian beams. J Opt A–Pure Appl Opt 2004; 6: S157-S161. DOI: 10.1088/1464-4258/6/5/001.
  9. Abramochkin EG, Volostnikov VG. Spiral light beams. Physics–Uspekhi 2004; 47(12): 1177-1203. DOI: 10.1070/PU2004v047n12ABEH001802.
  10. Shen Y, Meng Y, Fu X, Gong M. Hybrid topological evolution of multi-singularity vortex beams: generalized nature for helical-Ince–Gaussian and Hermite–Laguerre–Gaussian modes. J Opt Soc Am A 2019; 36: 578-587. DOI: 10.1364/JOSAA.36.000578.
  11. Izdebskaya YV, Shvedov VG, Volyar AV. Symmetric array of off-axis singular beams: spiral beams and their critical points. J Opt Soc Am A 2008; 25(1): 171-181. DOI: 10.1364/JOSAA.25.000171.
  12. Volyar A, Abramochkin E, Razueva E, Bretsko M, Akimova Ya. Geometry of spiral beams: 3D curved structured vortex beams and optical currents. J Opt 2021; 23(4): 44003. DOI: 10.1088/2040-8986/abed5c.
  13. Volyar A, Akimova Ya. Structural stability of spiral vortex beams to sector perturbations. Appl Opt 2021; 61(21): 8865-8874. DOI: 10.1364/AO.435420.
  14. Abramochkin E, Volostnikov V. Beam transformation and nontransformed beams. Opt Commun 1991; 83: 123-125. DOI: 10.1016/0030-4018(91)90534-K.
  15. Pinnell J, Nape I, Sephton B, Cox MA, Rodríguez-Fajardo V, Forbes A. Modal analysis of structured light with spatial light modulators: a practical tutorial. J Opt Soc Am A 2020; 37(11): 146-160. DOI: 10.1364/JOSAA.398712.
  16. Volyar A, Abramochkin E, Akimova Ya, Bretsko M, Egorov Y. Fast oscillations of orbital angular momentum and Shannon entropy caused by radial numbers of structured vortex beams. Appl Opt 2022; 61(21): 6398-6407. DOI: 10.1364/AO.464178.
  17. Abramochkin E, Razueva E, Volostnikov V. General astigmatic transform of Hermite–Laguerre–Gaussian beams. J Opt Soc Am A 2010; 27(11): 2506-2513. DOI: 10.1364/JOSAA.27.002506.
  18. Wang Z, Shen Y, Naidoo D, Fu X, Forbes A. Astigmatic hybrid SU(2) vector vortex beams: towards versatile structures in longitudinally variant polarized optics. Opt Express 2021; 29(1): 315-329. DOI: 10.1364/OE.414674.
  19. Allen L, Beijersbergen MW, Spreew RJC, Woerdman JP. Orbital angular momentum and the transformation of Gauss-Laguerre modes. Phys Rev A 1992; 45: 8185-8189. DOI: 10.1103/PhysRevA.45.8185.
  20. Reddy SG, Prabhakar S, Aadhi A, Banerji J, Singh RP. Propagation of an arbitrary vortex pair through an astigmatic optical system and determination of its topological charge. J Opt Soc Am A 2014; 31(6): 1295-1302. DOI: 10.1364/JOSAA.31.001295.
  21. Kotlyar VV, Kovalev AA, Pofirev AP. Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl Opt 2017; 56(14): 4095-4104. DOI: 10.1364/AO.56.004095.
  22. Chen Y-F, Chang C, Lee C, Tung J, Liang H, Huang K-F. Characterizing the propagation evolution of wave patterns and vortex structures in astigmatic transformations of Hermite–Gaussian beams. Laser Phys 2018; 28(1): 015002. DOI: 10.1088/1555-6611/aa9625.
  23. Fadeyeva TA, Rubass AF, Aleksandrov RV, Volyar AV. Does the optical angular momentum change smoothly in fractional-charged vortex beams? J Opt Soc Am B 2014; 31(4): 798-805. DOI: 10.1364/JOSAB.31.000798.
  24. Kotlyar VV, Kovalev AA. Orbital angular momentum of paraxial propagation-invariant laser beams. J Opt Soc Am A 2022; 39(6): 1061-1065. DOI: 10.1364/JOSAA.457660.
  25. Arnold VI. Mathematical methods of classical mechanics. Springer; 2003. ISBN: 978-0-387-96890-2.
  26. Thompson WJ. Angular Momentum: an illustrated guide to rotational symmetries for physical systems. New York: Wiley-VCH; 1994. ISBN: 978-0-471-55264-2.
  27. Szegö G. Orthogonal polynomials [In Russian]. Moscow: "Fizmatgiz" Publisher; 1962.
  28. Volyar AV, Abramochkin EG, Egorov Yu, Bretsko M, Akimova Ya. Digital sorting of Hermite-Gauss beams: mode spectra and topological charge of a perturbed Laguerre-Gauss beam. Computer Optics 2020; 44(4): 501-509. DOI: 10.18287/2412-6179-CO-747.
  29. Volyar A, Bretsko M, Akimova Ya, Egorov Yu. Measurement of the vortex and orbital angular momentum spectra with a single cylindrical lens. Appl Opt 2019; 58(21): 5748-5755. DOI: 10.1364/AO.58.005748.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20