(47-3) 03 * << * >> * Russian * English * Content * All Issues

Minimal focal spot obtained by focusing circularly polarized light
S.S. Stafeev 1,2, V.D. Zaitcev 1,2, V.V. Kotlyar 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 791 kB

DOI: 10.18287/2412-6179-CO-1247

Pages: 361-366.

Full text of article: Russian language.

Abstract:
In this paper, using the Richards-Wolf equations, we analyze focusing circularly polarized light with flat diffractive lenses. It is shown that as the numerical aperture of the lens increases, the size of the focal spot first decreases and then begins to grow. The minimum focal spot is observed at NA=0.96 (FWHM=0.55λ). With a further increase in the numerical aperture of the lens, the growth of the longitudinal component leads to an increase in the size of the focal spot. When the flat diffractive lens is replaced by an aplanatic lens, the size of the focal spot decreases monotonically as the numerical aperture of the lens increases.

Keywords:
tight focusing, Richards-Wolf formulas, polarization conversion, flat-top focus.

Citation:
Stafeev SS, Zaitsev VD, Kotlyar VV. Minimal focal spot obtained by focusing circularly polarized light. Computer Optics 2023; 47(3): 361-366. DOI: 10.18287/2412-6179-CO-1247.

Acknowledgements:
This work was supported by Russian Science Foundation under project No. 22-22-00265.

References:

  1. Man Z, Dou X, Urbach HP. The evolutions of spin density and energy flux of strongly focused standard full Poincaré beams. Opt Commun 2020; 458: 124790. DOI: 10.1016/j.optcom.2019.124790.
  2. Man Z, Bai Z, Zhang S, Li X, Li J, Ge X, Zhang Y, Fu S. Redistributing the energy flow of a tightly focused radially polarized optical field by designing phase masks. Opt Express 2018; 26(18): 23935. DOI: 10.1364/OE.26.023935.
  3. Gao X-Z, Pan Y, Zhang G-L, Zhao M-D, Ren Z-C, Tu C-G, Li Y-N, Wang H-T. Redistributing the energy flow of tightly focused ellipticity-variant vector optical fields. Photonics Res 2017; 5(6): 640-648. DOI: 10.1364/PRJ.5.000640.
  4. Jiao X, Liu S, Wang Q, Gan X, Li P, Zhao J. Redistributing energy flow and polarization of a focused azimuthally polarized beam with rotationally symmetric sector-shaped obstacles. Opt Lett 2012; 37(6): 1041-1048. DOI: 10.1364/OL.37.001041.
  5. Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc Math Phys Eng Sci 1959; 253(1274): 358-379. DOI: 10.1098/rspa.1959.0200.
  6. Stafeev SS, Nalimov AG, Kovalev AA, Zaitsev VD, Kotlyar VV. Circular polarization near the tight focus of linearly polarized light. Photonics 2022; 9(3): 196. DOI: 10.3390/photonics9030196.
  7. Bauer T, Banzer P, Karimi E, Orlov S, Rubano A, Marrucci L, Santamato E, Boyd RW, Leuchs G. Observation of optical polarization Möbius strips. Science 2015; 347: 964-966. DOI: 10.1126/science.1260635.
  8. Kotlyar VV, Stafeev SS, Kozlova ES, Nalimov AG. Spin-orbital conversion of a strongly focused light wave with high-order cylindrical–circular polarization. Sensors 2021; 21(19): 6424. DOI: 10.3390/s21196424.
  9. Wang H, Shi L, Lukyanchuk B, Sheppard C, Chong CT. Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat Photonics 2008; 2: 501-505. DOI: 10.1038/nphoton.2008.127.
  10. Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam. Phys Rev Lett 2003; 91(23): 233901. DOI: 10.1103/PhysRevLett.91.233901.
  11. Grosjean T, Gauthier I. Longitudinally polarized electric and magnetic optical nano-needles of ultra high lengths. Opt Commun 2013; 294: 333-337. DOI: 10.1016/j.optcom.2012.12.032.
  12. Wang X, Zhu B, Dong Y, Wang S, Zhu Z, Bo F, Li X. Generation of equilateral-polygon-like flat-top focus by tightly focusing radially polarized beams superposed with off-axis vortex arrays. Opt Express 2017; 25(22): 26844-26852. DOI: 10.1364/OE.25.026844.
  13. Ping C, Liang C, Wang F, Cai Y. Radially polarized multi-Gaussian Schell-model beam and its tight focusing properties. Opt Express 2017; 25(26): 32475-32490. DOI: 10.1364/OE.25.032475.
  14. Chen H, Tripathi S, Toussaint KC. Demonstration of flat-top focusing under radial polarization illumination. Opt Lett 2014; 39(4): 834-837. DOI: 10.1364/OL.39.000834.
  15. Malik HK, Devi L. Relativistic self focusing and frequency shift of super-Gaussian laser beam in plasma. Results in Physics 2020; 17: 103070. DOI: 10.1016/j.rinp.2020.103070.
  16. Savelyev DA. The investigation of the features of focusing vortex super-Gaussian beams with a variable-height diffractive axicon. Computer Optics 2021; 45(2): 214-221. DOI: 10.18287/2412-6179-CO-862.
  17. Ding X, Ren Y, Lu R. Shaping super-Gaussian beam through digital micro-mirror device. Science China Physics, Mechanics & Astronomy 2015; 58(3): 1-6. DOI: 10.1007/s11433-014-5499-9.
  18. Savelyev DA. Peculiarities of focusing circularly and radially polarized super-Gaussian beams using ring gratings with varying relief height. Computer Optics 2022; 46(4): 537-546. DOI: 10.18287/2412-6179-CO-1131.
  19. Kasinski JJ, Burnham RL. Near-diffraction-limited laser beam shaping with diamond-turned aspheric optics. Opt Lett 1997; 22(14): 1062-1064. DOI: 10.1364/ol.22.001062.
  20. Li Y. Light beams with flat-topped profiles. Opt Lett 2002; 27(12): 1007-1009. DOI: 10.1364/ol.27.001007.
  21. Eyyuboglu HT, Arpali Ç, Baykal YK. Flat topped beams and their characteristics in turbulent media. Opt Express 2006; 14(10): 4196-4207. DOI: 10.1364/oe.14.004196.
  22. Kotlyar VV, Nalimov AG, Stafeev SS. Exploiting the circular polarization of light to obtain a spiral energy flow at the subwavelength focus. J Opt Soc Am B 2019; 36(10): 2850-2855. DOI: 10.1364/JOSAB.36.002850.
  23. Stafeev SS, Zaitsev VD, Kotlyar VV. Circular polarization before and after the sharp focus for linearly polarized light. Computer Optics 2022; 46(3): 381-387. DOI: 10.18287/2412-6179-CO-1070.
  24. Davidson N, Bokor N. High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens. Opt Lett 2004; 29(12): 1318-1320. DOI: 10.1364/ol.29.001318.
  25. Stafeev SS, Zaicev VD. A minimal subwavelength focal spot for the energy flux. Computer Optics 2021; 45(5): 685-691. DOI: 10.18287/2412-6179-CO-908.
  26. Stafeev SS, Nalimov AG. Longitudinal component of the Poynting vector of a tightly focused optical vortex with circular polarization. Computer Optics 2018; 42(1): 190-196. DOI: 10.18287/2412-6179-2018-42-2-190-196.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20