(47-4) 05 * << * >> * Russian * English * Content * All Issues

Analytical approach to the problem of electromagnetic wave scattering by a cylindrical hole in a thin metal screen
N.V. Selina 1

Kuban State Technological University, Russia, 350000, Krasnodar, Moskovskaya str. 2

 PDF, 512 kB

DOI: 10.18287/2412-6179-CO-1218

Pages: 548-558.

Full text of article: Russian language.

Abstract:
A method of analytical study of a metal film perforated by cylindrical nanoholes as the basis of a metasurface has been proposed. The formulas deduced completely determine the electromagnetic field of a wave scattered by the hole at any distance from the surface. The calculation of the transmission and absorption spectra of the studied structure, as well as the dependence of the phase of the scattered wave on the radius of the hole, is carried out using analytical formulas. The calculation results are consistent with the literature data for calculating the efficiency of a quantum photodetector and the phase change interval of light scattered by meta-atoms required for lens design.

Keywords:
metal film with cylindrical nanoholes, plasmon resonance, meta-atom, metasurface.

Citation:
Selina NV. Analytical approach to the problem of electromagnetic wave scattering by a cylindrical hole in a thin metal screen. Computer Optics 2023; 47(4): 548-558. DOI: 10.18287/2412-6179-CO-1218.

References:

  1. Remnev MA, Klimov VV. Metasurfaces: a new look at Maxwell's equations and new ways to control light. Physics–Uspekhi 2018; 61(2): 157-190. DOI: 10.3367/UFNe.2017.08.038192.
  2. Hsiao HH, Chu CH, Tsai DP. Fundamentals and applications of metasurfaces. Small Methods 2017; 1(4): 1600064.
  3. Zhang XG, Yu Q. Polarization-controlled dual-programmable metasurfaces. Adv Sci 2020; 7(11): 1903382. DOI: 10.1002/advs. 201903382.
  4. Nikolaev NA, Rybak AA, Kuznetsov SA. Application of metasurface-based low-pass filters for improving THz-TDS characteristics. J Phys Conf Ser 2020; 1461: 012118. DOI: 10.1088/1742-6596/1461/1/012118.
  5. Heng H, Wang R. Electromagnetic resonant properties of metal-dielectric-metal (MDM) cylindrical microcavities, Photonic Sens 2017; 7(2): 148-156.
  6. de Abajo FJG. Light transmission through a singlecylindrical hole in a metallic film. Opt Express 2002; 10(25): 1475-1484.
  7. Sommerfeld A. Uber die Forpflanzung elektrodynamischer Weller längs eines Drahtes. Anallen der Physik 1899; 303(2): 233-290.
  8. Davidovich MV, Nefedov IS. Space-time dispersion and waveguide properties of two-dimensional periodic rod metallic photonic crystals [In Russian]. JETP 2014; 145(5): 771-786.
  9. Grishina NV, Eremin YuA, Sveshnikov AG. Analysis of spectral scattering properties of a nano-hole in a film [In Russian]. VMU. Physics. Astronomy 2009; 1: 32-36.
  10. Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. 7th ed. Cambridge: Cambridge University Press; 1999. ISBN: 0-521-64222-1.
  11. Zyablovsky AA, Pavlov AA, Klimov VV, Pukhov AA, Dorofeenko AV, Vinogradov AP, Lisyansky AA. Extraordinary passage of light through a metal film perforated with a lattice of subwavelength holes [In Russian]. JETP 2017; 152(2): 211-226. DOI:10.7868/S0044451017080016.
  12. Anyutin AP. Plasmon Resonances in Circular and Elliptic Nanocylinders Made of Premium Metals. Journal of Communications Technology and Electronics 2021; 66(3): 259-265. DOI:10.1134/S1064226921030025.
  13. Selina NV, Tumayev EN. Propagation of electromagnetic wave in Pendry lens. Nanotechnol Russ 2016; 11(5-6): 349-354. DOI: 10.1134/S1995078016030149.
  14. Selina NV. Light transmission of a thin metal screen with an infinite array of periodic nanoslits. Opt Spectrosc 2019; 127: 700-705. DOI: 10.1134/s0030400x19100266.
  15. Selina N. Solution of Maxwell’s equations for cylindrical symmetry waveguides. J Appl Math Phys 2020; 8(5): 753-765. DOI: 10.4236/jamp.2020.85058.
  16. Selina NV. Quasi-one-dimensional cylindrical surface plasmon-polaritons [In Russian]. Nanostructures. Mathematical Physics and Modeling 2018; 18(1): 45-64.
  17. Varshalovich DA, Moskalev AN, Khersonsky VK. Quantum theory of angular momentum [In Russian]. Leningrad: “Nauka” Publisher; 1975.
  18. Liu H, Kang Y, Meng T, Tian C, Wei G. High photon absorptivity of quantum dot infrared photodetectors achieved by the surface plasmon effect of metal nanohole array. Nanoscale Res Lett 2020; 15: 98. DOI: 10.1186/s11671-020-03326-9.
  19. Yakimov AI, Kiriyenko VV, Armbrister VA, Dvurechenskiy AV. Selective amplification of the photo-current of holes by surface plasmon-polaritons in layers of quantum dots Ge/Si. JETP Lett 2017; 105(7): 419-423. DOI. 10.1134/S002136401707013X.
  20. Ishii S, Shalaev VM, Kildishev AV. Holey-metal lenses: sieving single modes with proper phases. Nano Lett 2013; 13: 159-163. DOI: 10.1021/nl303841n.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20