(47-4) 06 * << * >> * Russian * English * Content * All Issues
  
Surface roughness influence on photonic nanojet parameters of dielectric microspheres
  Y.E. Geints 1, E.K. Panina 1
  1 V.E. Zuev Institute of Atmospheric Optics SB RAS, 634055, Tomsk, Russia, Academician Zuev Square 1
 PDF, 1247 kB
  PDF, 1247 kB
DOI: 10.18287/2412-6179-CO-1280
Pages: 559-566.
Full text of article: Russian language.
 
Abstract:
All naturally found and  technologically fabricated solid microparticles possess surface roughness. Upon  optical wave scattering from such particles, in addition to its geometric  shape, the surface relief becomes an important morphological factor determining  the optical properties of the scatterer. We present results of the numerical  3D-simulations of focusing an optical wave with a dielectric microsphere with  randomly distributed surface roughness. We address different cases of azimuthally  symmetric and asymmetric distortions of the particle surface. We show that the  key parameters of the near-field focal region (intensity, longitudinal and  transverse dimensions) referred to as a photonic nanojet (PNJ) are sensitive to  changes in the microsphere surface texture. Two important PNJ parameters, the  peak intensity and the longitudinal length, are subject to more prominent  changes. The influence of the optical contrast (relative refractive index) of  the microsphere on PNJ parameters is investigated in detail. The possibility of  reducing the influence of surface roughness on the near-field focusing strength  by microsphere watering (water-uptake) is demonstrated.
Keywords:
photonic nanojet, dielectric  microsphere, near-field focusing, surface roughness.
Citation:
  Geints YE, Panina EK. Surface roughness influence on photonic nanojet parameters of dielectric microspheres. Computer Optics 2023; 47(4): 559-566. DOI: 10.18287/2412-6179-CO-1280.
Acknowledgements:
  The work was carried out  with the support of the Ministry of Science and Higher Education as part of the  execution of work on the State task of the IAO SB RAS.
References:
  - Wielicki BA, Barkstrom  BR, Baum BA, Charlock TP, Green RN, Kratz DP, Lee RB, Minnis P, Smith GL, Wong  T, Young DF, Cess RD, Coakley JA, Crommelynck AH, Donner L, Kandel R, King MD,  Miller AJ, Ramanathan V, Radall DA, Stowe LL, Welch RM. Clouds and earth’s radiant  energy system (CERES): Algorism overview. IEEE Trans Geosci Remote Sensing1998;  36: 1127-1141.
 
- Panchenko MV, Kabanov  MV, Pkhalagov YuA, Belan BD, Kozlov VS, Sakerin SM, Kabanov DM, Uzhegov VN,  Shchelkanov NN, Polkin VV, Terpugova SA, Tolmachev GN, Yausheva EP, Arshinov  MYu, Simonenkov DV, Shmargunov VP, Chernov DG, Turchinovich YuS, Pol’kin VV,  Zhuravleva TB, Nasrtdinov IM, Zenkova PN. Integrated studies of tropospheric  aerosol at the institute of atmospheric optics (development stages). Atmospheric Ocean Opt 2020; 33(01): 27-41.
 
- Pan YL, Aptowicz KB, Chang RK, Hart  M, Eversole JD. Characterizing and monitoring respiratory aerosols by light  scattering. Opt Lett 2003; 28(8): 589-591.
 
- Zenkova PN, Chernov DG, Shmargunov VP, Panchenko MV,  Belan BD. Submicron aerosol and absorbing substance in the troposphere of the  russian sector of the arctic according to measurements onboard the Tu-134 Optik  Aircraft Laboratory in 2020. Atmospheric  Ocean Opt 2022; 35(01): 43-51.
 
- Chen Z, Taflove A, Backman V.  Photonic nanojet enhancement of backscattering of light by nanoparticles: a  potential novel visible-light ultramicroscopy technique. Opt Express  2004; 12(7): 1214-1220.
 
- Li X, Chen Z, Taflove A, Backman V.  Optical analysis of nanoparticles via enhanced backscattering facilitated by  3-D photonic nanojets. Opt Express 2005; 13(22): 526-533.
 
- Kato S, Chonan S, Aoki T.  High-numerical-aperture microlensed tip on an air-clad optical fiber. Opt  Lett 2014; 39(4): 773-776.
 
- Liu C, Ye A. Microsphere assisted  optical super-resolution imaging with narrowband illumination. Optics  Communications 2021; 485: 126658 DOI:  10.1016/j.optcom.2020.126658.
 
- Assafrao AC, Kumar N, Wachters AJH,  Pereira SF, Urbach HP, Brun M, Segolene O. Application of micro solid immersion  lens as probe for near-field scanning microscopy. Appl Phys Lett 2014;  104: 101101. DOI: 10.1063/1.4867460.
 
- Cui X, Erni D, Hafner C. Optical  forces on metallic nanoparticles induced by a photonic nanojet. Opt  Express 2008; 16: 13560-13568.
 
- Zaitsev  VD, Stafeev SS. Photonic jets arrays produced by triangular dielectric prisms  for Mid-IR imaging. Photonics & Electromagnetics Research Symposium –  Spring (PIERS–SPRING) 2020: 2610-2614. DOI:  10.1109/PIERS-Spring46901.2019.9017599.
 
- Geints YuE, Zemlyanov AA, Panina EK.  Microaxicon-generated photonic nanojets. J Opt Soc Am B 2015; 32(8): 1570-1574.  DOI: 10.1364/JOSAB.27.001991.
 
- Geints YuE, Zemlyanov AA, Minin OV,  Minin IV. Systematic study and comparison of photonic nanojets produced by  dielectric microparticles in 2D- and 3D-spatial configurations. J Opt  2018; 20(6): 065606. DOI: 10.1088/2040-8986/aac1d9.
 
- Chen Z, Taflove A, Backman V.  Photonic nanojet enhancement of backscattering of light by nanoparticles: a  potential novel visible-light ultramicroscopy technique. Opt Express  2004; 12(7): 1214-1220.
 
- Geints YuE, Panina EK, Zemlyanov AA.  Control over parameters of photon nanojets of dielectric microspheres. Opt  Commun 2010; 283(23): 4775-4781. DOI: 10.1016/j.optcom.2010.07.007.
 
- Geints YuE, Minin IV, Panina EK,  Zemlyanov АА, Minin ОV. Comparison of photonic nanojets  key parameters produced by nonspherical microparticles. Opt Quantum  Electron 2017; 49(3): 118. DOI: 10.1007/s11082-017-0958-y.
 
- Mandal A, Tiwari P, Upputuri PK, Dantham VR. Characteristic  parameters of photonic nanojets of single dielectric microspheres illuminated  by focused broadband radiation. Sci  Rep 2022; 12: 173. DOI: 10.1038/s41598-021-03610-3.
 
- Geints YuE, Zemlyanov AA, Panina EK.  Photonic jets from resonantly-excited transparent dielectric microspheres. J  Opt Soc Am B 2012; 29(4): 758-762.
 
- Devilez A, Bonod N, Stout B, Gerard  D, Wenger J, Rigneault H, Popov E. Three-dimensional subwavelength confinement  of light with dielectric microspheres. Opt Express 2009; 17(4):  2089-2094.
 
- Lecler S, Takakura Y, Meyrueis P. Properties of a  three-dimensional photonic jet. Opt  Lett 2005; 30(19): 2641-2643.
 
- Itagi  AV, Challener WA. Optics of photonic nanojets. J Opt Soc Am A 2005; 22(12):  2847-2858.
 
- Abdurrochman A, Lecler S, Mermet F,  Tumbelaka BY, Serio B, Fontaine J. Photonic jet breakthrough for direct laser  microetching using nanosecond near-infrared laser. Appl Opt 2014; 53:  7202-7207.
 
- Astratov  VN, Darafsheh A, Kerr MD, Allen KW, Fried   NM, Antoszyk AN, Ying HS.  Photonic nanojets for laser surgery. SPIE Newsroom 2010. Source: <https://spie.org/news/2578-photonic-nanojets-for-laser-surgery?SSO=1>.  DOI: 10.1117/2.1201002.002578.
 
- Terakawa M, Tanaka Y. Dielectric  microsphere mediated transfection using a femtosecond laser. Opt Lett  2011; 36: 2877-2879.
 
- Garces-Chavez V, McGloin D, Melville  H, Sibbett W, Dholakia K. Simultaneous micromanipulation in multiple planes  using a self-reconstructing light beam. Nature 2002; 419(6903): 145-147.  DOI: 10.1038/nature01007.
 
- Zhou Zz, Ali H, Hou Zs, Hue W, Cao  Y. Enhanced photonic nanojets for submicron patterning. J Cent South  Univ 2022; 29: 3323-3334. DOI: 10.1007/s11771-022-5116-4.
 
- Lia  C, Kattawara GW, Yangb P. Effects of surface roughness on light scattering by  small particles, J Quant Spectrosc Radiat Transf 2004; 89: 123-131.
 
- Sun  W, Nousiainen T, Muinonen K, Fu Q, Loeb NG, Videen G. Light scattering by  Gaussian particles: a solution with finite-difference time domain technique. J  Quant Spectrosc Radiat Transf 2003; 79-80: 1083-1090. DOI:  10.1016/S0022-4073(02)00341-2.
 
- Li  C, Kattawara GW, Yang P. Effects of surface roughness on light scattering by  small particles. J Quant Spectrosc Radiat Transf 2004; 89: 123-131.
 
- Mahariq I, Astratov VN, Kurt H.  Persistence of photonic nanojet formation under the deformation of circular  boundary. J Opt Soc Am B 2016; 33: 535-542. DOI: 10.1364/JOSAB.33.000535.
 
- Mahariq I, Abdeljawad T, Karar AS,  Alboon SA, Kurt H, Maslov AV. Photonic nanojets and whispering gallery modes in  smooth and corrugated micro-cylinders under point-source illumination. Photonics  2020; 7(3): 50. DOI: 10.3390/photonics7030050.
 
- Luk’yanchuk BS, Paniagua-Domínguez  R, Minin IV, Minin OV, Wang Z. Refractive index less than two: photonic  nanojets yesterday, today and tomorrow [Invited]. Opt Mater Express  2017; 7(6): 1820-1847. 
- Geints YuE, Zemlyanov  AA, Pal'chikov AV. Influence of droplet surface deformations on stimulated  Raman scattering of light. Atmospheric  Ocean Opt 1997; 10(12): 974-978.
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20