(47-4) 08 * << * >> * Russian * English * Content * All Issues

Sensor with enhanced performance based on photonic crystal with a defect layer
I.M. Efimov 1, N.A. Vanyushkin 1, S.S. Golik 1,2, A.H. Gevorgyan 1

School of Natural Sciences, Far Eastern Federal University,
690922, Vladivostok, Russia, Russky Island, Ajax Bay 10;
Institute of Automation and Control Processes, Far East Branch,
Russian Academy of Sciences, 690041, Vladivostok, Russia

 PDF, 1301 kB

DOI: 10.18287/2412-6179-CO-1245

Pages: 572-579.

Full text of article: English language.

Abstract:
We propose an improved structure of an optical biosensor based on a photonic crystal with a defect layer, which can detect the concentration of organic contaminants in water by defect mode shift. We investigated 4 types of defective photonic crystals with different arrangements of layers inside the perfect photonic crystals and their impact on the performance of the sensor. The sensitivity and amplitude of defect mode were examined as a function of defect layer thickness. Also, the peculiarities of edge modes in the presence of defect layer were investigated. Finally, we obtained a characteristic equation to determine the wavelengths of defect modes for an arbitrary 1D photonic crystal with an isotropic defect inside.

Keywords:
sensor, photonic crystal, defect modes, organic contaminants, sensitivity.

Citation:
Efimov IM, Vanyushkin NA, Golik SS, Gevorgyan AH. Sensor with enhanced performance based on photonic crystal with a defect layer. Computer Optics 2023; 47(4): 572-579. DOI: 10.18287/2412-6179-CO-1245.

Acknowledgements:
The work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics "BASIS" (Grant № 21-1-1-6-1).

References:

  1. Asghari A, Wang C, Yoo K, et al. Label-free plasmonic biosensor for rapid, quantitative, and highly sensitive COVID-19 serology: Implementation and clinical validation. Anal Chem 2021; 94(2): 975-984. DOI: 10.1021/acs.analchem.1c03850.
  2. Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol 2020; 92: 424-432. DOI: 10.1002/jmv.25685.
  3. Arano-Martinez JA, Martinez-Gonzalez CL, Salazar MI, Torres CT. A framework for biosensors assisted by multiphoton effects and machine learning. MDPI Biosens 2022; 12(9): 710-735. DOI: 10.3390/bios12090710.
  4. West RT. Development of a novel luc based s. cerevisiae biosensor. Aberdeen, UK: ProQuest; 2007: 63.
  5. Bounaas F, Labbani A. Optimized cancer cells sensor based on 1D photonic crystal vertical slot structure. Prog Electromagn Res C 2021; 117: 239-249. DOI: 10.2528/PIERC21100706.
  6. Hosseini E, Mir A, Farmani A, et al. Black phosphorous-based nanostructures for refractive index sensing with high figure of merit in the mid-infrared. Plasmonics 2022; 17: 639-646. DOI: 10.1007/s11468-021-01550-2.
  7. Asghari A, Wang C, Yoo K, et al. Fast, accurate, point-of-care COVID-19 pandemic diagnosis enabled through advanced lab-on-chip optical biosensors: Opportunities and challenges. Appl Phys Rev 2021; 8: 031313. DOI: 10.1063/5.0022211.
  8. Rende M, Xiaoping L, Hongzhong C, et al. Refractive index modulation in magnetophoresis of bioreaction induced self-assembled magnetic fluid. Opt Lett 2021; 46: 4658-4661. DOI: 10.1364/OL.435996.
  9. Shiveshwari L, Awasthi S. Transmission properties of one-dimensional ternary plasma photonic crystals. Phys Plasmas 2015; 22: 092129. DOI: 10.1063/1.4931926.
  10. Qutb SR, Aly AH, Sabra W. Salinity and temperature detection for seawater based on a 1D-defective photonic crystal material. Int J Mod Phys B 2020; 35(1): 2150012. DOI: 10.1142/S0217979221500120.
  11. Cathy M, Gareth J, et al. On-chip cavity-enhanced absorption spectroscopy using a white light-emitting diode and polymer mirrors. Lab on a Chip 2015; 15: 711-717. DOI: 10.1039/C4LC01264J.
  12. Akhilesh K, Charusluk V, et al. VOC biomarker monitoring for diabetes through exhaled breath using Ag/P-TiO2 composite plasmonic sensor. IEEE Sens J 2021; 21(20): 22631-22637. DOI: 10.1109/JSEN.2021.3104766.
  13. Akhilesh K, Vinod K, et al. SPR based optical fiber refractive index sensor using silver nanowire assisted CSMFC. IEEE Photon Technol Lett 2020; 32(8): 465-468. DOI: 10.1109/LPT.2020.2980470.
  14. Nunzio C, et al. Proof of concept for a quick and highly sensitive on-site detection of SARS-CoV-2 by plasmonic optical fibers and molecularly imprinted polymers. Sensors 2021; 21(5): 1681. DOI: 10.3390/s21051681.
  15. Muhammad U, Menal K. SARS-CoV-2 Detection using optical fiber based sensor method. Sensors 2022; 22(3): 751. DOI: 10.3390/s22030751.
  16. Kneipp J. Interrogating cells, tissues, and live animals with new generations of surface-enhanced Raman scattering probes and labels. J ACS Nano 2017; 11(2): 1136-1141. DOI: 10.1021/acsnano.7b00152.
  17. Singh S, et al. Impacts of introducing and lifting nonpharmaceutical interventions on COVID-19 daily growth rate and compliance in the United States. Proc Natl Acad Sci USA 2021; 118(12): e2021359118. DOI: 10.1073/pnas.2021359118.
  18. Monkawa A, Takimoto Y, Nakagawa T, et al. Ultra-highly sensitive detection of influenza virus by localized surface-plasmon resonance sensor. Res Square 2021; 1: 1-17. Source: <https://assets.researchsquare.com/files/rs-879879/v1/07758a1a-f369-4474-b7e7-49748057a9b7.pdf?c=1635916242>. DOI: 10.21203/rs.3.rs-879879/v1.
  19. Henriquez L, Acuna M, Rojas A. Biosensors for the detection of bacterial and viral clinical pathogens. Sensors 2020; 20(23): 6926. DOI: 10.3390/s20236926.
  20. Samson R, Navale R, Dharne S. Biosensors: frontiers in rapid detection of COVID-19. Biotech 2020; 10: 385. DOI: 10.1007/s13205-020-02369-0.
  21. Chaves F, Elsayed A, Mehaney A, et al. Defect mode modulation for a protein solution cavity surrounded by graphene and nanocomposite layers. Optik 2021; 242: 167161. DOI: 10.1016/j.ijleo.2021.167161.
  22. Taya A, Daher G, Colak I. Highly sensitive nano-sensor based on a binary photonic crystal for the detection of mycobacterium tuberculosis bacteria. J Mater Sci Mater Electron 2021; 32(1): 28406-28416. DOI: 10.1007/s10854-021-07220-7.
  23. Joannopoulos JD. Photonic crystals: Molding the flow of light. Princeton: Princeton University Press; 1995.
  24. Shkondin E, Takayama O, Aryaee Panah ME, et al. Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials. Opt Mater Express 2017; 7(11): 1606-1627. DOI: 10.1364/OME.7.001606.
  25. Tinga WR, Voss WAG, Blossey DF. Generalized approach to multiphase dielectric mixture theory. J Appl Phys 1973; 44: 3897. DOI: 10.1063/1.1662868.
  26. Sarkar S, Gupta V, Kumar M, et al. Hybridized guided-mode resonances via colloidal plasmonic self-assembled grating. ACS Appl Mater Interfaces 2019; 11(14): 13752-13760. DOI: 10.1021/acsami.8b20535.
  27. Belyakov V. Diffraction optics of complex-structured periodic media. 2nd ed. Cham, Switzerland: Springer Nature Switzerland AG; 2019. ISBN: 978-3-319-43481-0.
  28. Efimov IM, Vanyushkin NA, Gevorgyan AH, Golik SS. Optical biosensor based on a photonic crystal with a defective layer designed to determine the concentration of SARS-CoV-2 in water. Physica Scripta 2022; 97(5): 055506. DOI: 10.1088/1402-4896/ac5ff7.
  29. Markel V. Introduction to the Maxwell Garnett approximation: tutorial. J Opt Soc Am A 2016; 33(7): 1244-1256. DOI: 10.1364/JOSAA.33.001244.
  30. Bordo V. Theory of light reflection and transmission by a plasmonic nanocomposite slab: Emergence of broadband perfect absorption. arXiv Preprint. 2021. Source: <https://arxiv.org/abs/2101.09681>.
  31. Efimov IM, Vanyushkin NA, Gevorgyan AH. Peculiarities of the electromagnetic field distribution inside a 1D photonic crystal with a defect layer. Bull Russ Acad Sci: Phys 2022; 86(1): S60-S65. DOI: 10.3103/S1062873822700393.
  32. Yeh P. Optical waves in layered media. New York: Wiley; 1988.
  33. Yariv A, Yeh P. Optical waves in crystals. New York: Wiley; 1984.
  34. Vanyushkin NA, Gevorgyan AH, Golik SS. Scattering of a plane wave by an inhomogeneous 1D dielectric layer with gradient refractive index. Opt Mater 2022; 127: 112306. DOI: 10.1016/j.optmat.2022.112306.
  35. Hale G, Querry M. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl Opt 1973; 12(3): 555-563. DOI: 10.1364/AO.12.000555.
  36. Ermolinskiy P, et al. Red blood cell in the field of a beam of optical tweezers. Quantum Electron 2022; 52(1): 22-27. DOI: 10.1070/QEL17962.
  37. Cross T, Opella S. Solid-state NMR structural studies of peptides and proteins in membranes. Curr Opin Struct Biol 1994; 4(4): 574-581. DOI: 10.1016/S0959-440X(94)90220-8.
  38. Harlepp S, et al. Hemodynamic forces can be accurately measured in vivo with optical tweezers. Mol Biol Cell 2017; 28(23): 3252-3260. DOI: 10.1091/mbc.e17-06-0382.
  39. Rowe D, et al. Complex refractive index spectra of whole blood and aqueous solutions of anticoagulants, analgesics and buffers in the mid-infrared. Sci Rep 2017; 7(1): 7356. DOI: 10.1038/s41598-017-07842-0.
  40. Li D, Zhou H, Hui X, et al. Plasmonic biosensor augmented by a genetic algorithm for ultra-rapid, label-free, and multi-functional detection of COVID-19. Anal Chem 2021; 93(27): 9437-9444. DOI: 10.1021/acs.analchem.1c01078.
  41. Valerio G, Maneesh N, Leal L, et al. Ultrarapid on-site detection of SARS-CoV-2 infection using simple ATR-FTIR spectroscopy and an analysis algorithm: High sensitivity and specificity. Anal Chem 2021; 93(5): 2950-2958. DOI: 10.1021/acs.analchem.0c04608.
  42. Gao L, Lemarchand F, Lequime M. Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs. J Eur Opt Soc Rapid Publ 2013; 8: 3010. DOI: 10.2971/jeos.2013.13010.
  43. Sarkar S, Gupta V, Kumar M, Schubert J, Probst PT, Joseph J, König TAF. Hybridized guided-mode resonances via colloidal plasmonic self-assembled grating. ACS Appl Mater Interfaces 2019; 11(14): 13752-13760. DOI: 10.1021/acsami.8b20535.
  44. Zaky A, et al. Gas sensing applications using magnetized cold plasma multilayers. Opt Quantum Electron 2022; 54(4): 217-230. DOI: 10.1007/s11082-022-03594-y.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20