(47-4) 08 * << * >> * Russian * English * Content * All Issues
  
Sensor with enhanced performance based on photonic crystal with a defect layer
 I.M. Efimov 1, N.A. Vanyushkin 1, S.S. Golik 1,2, A.H. Gevorgyan 1
 1 School of Natural Sciences, Far Eastern Federal University,
  690922, Vladivostok, Russia, Russky Island, Ajax Bay 10;
    2 Institute of Automation and Control Processes, Far East Branch,
     Russian Academy of Sciences, 690041, Vladivostok, Russia
 
 PDF, 1301 kB
  PDF, 1301 kB
DOI: 10.18287/2412-6179-CO-1245
Pages: 572-579.
Full text of article: English language.
 
Abstract:
We  propose an improved structure of an optical biosensor based on a photonic  crystal with a defect layer, which can detect the concentration of organic  contaminants in water by defect mode shift. We investigated 4 types of  defective photonic crystals with different arrangements of layers inside the  perfect photonic crystals and their impact on the performance of the sensor.  The sensitivity and amplitude of defect mode were examined as a function of defect  layer thickness. Also, the peculiarities of edge modes in the presence of defect  layer were investigated. Finally, we obtained a characteristic equation to  determine the wavelengths of defect modes for an arbitrary 1D photonic crystal  with an isotropic defect inside.
Keywords:
sensor, photonic crystal, defect modes, organic contaminants, sensitivity.
Citation:
  Efimov IM, Vanyushkin NA, Golik SS, Gevorgyan AH. Sensor with enhanced performance based on photonic crystal with a defect layer. Computer Optics 2023; 47(4): 572-579. DOI: 10.18287/2412-6179-CO-1245.
Acknowledgements:
  The work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics "BASIS" (Grant № 21-1-1-6-1).
References:
  - Asghari A, Wang C, Yoo  K, et al. Label-free plasmonic biosensor for rapid, quantitative, and highly  sensitive COVID-19 serology: Implementation and clinical validation. Anal Chem 2021; 94(2): 975-984. DOI: 10.1021/acs.analchem.1c03850.
 
- Li G, Fan Y, Lai Y, et  al. Coronavirus infections and immune responses. J Med  Virol 2020; 92: 424-432. DOI: 10.1002/jmv.25685.
 
- Arano-Martinez JA, Martinez-Gonzalez  CL, Salazar MI, Torres CT. A framework for biosensors assisted by multiphoton  effects and machine learning. MDPI Biosens 2022; 12(9): 710-735. DOI:  10.3390/bios12090710.
 
- West RT. Development of a novel luc  based s. cerevisiae biosensor. Aberdeen, UK: ProQuest; 2007: 63.
 
- Bounaas  F, Labbani A. Optimized cancer cells sensor based on 1D photonic crystal  vertical slot structure. Prog Electromagn Res C 2021; 117: 239-249. DOI:  10.2528/PIERC21100706.
 
- Hosseini E, Mir A, Farmani A, et al.  Black phosphorous-based nanostructures for refractive index sensing with high  figure of merit in the mid-infrared. Plasmonics 2022; 17: 639-646. DOI:  10.1007/s11468-021-01550-2.
 
- Asghari A, Wang C, Yoo K, et al.  Fast, accurate, point-of-care COVID-19 pandemic diagnosis enabled through advanced  lab-on-chip optical biosensors: Opportunities and challenges. Appl Phys  Rev 2021; 8: 031313. DOI: 10.1063/5.0022211.
 
- Rende M, Xiaoping L, Hongzhong C, et  al. Refractive index modulation in magnetophoresis of bioreaction induced  self-assembled magnetic fluid. Opt Lett 2021; 46: 4658-4661. DOI:  10.1364/OL.435996.
 
- Shiveshwari L, Awasthi S.  Transmission properties of one-dimensional ternary plasma photonic crystals. Phys  Plasmas 2015; 22: 092129. DOI: 10.1063/1.4931926.
 
- Qutb SR, Aly AH, Sabra W. Salinity  and temperature detection for seawater based on a 1D-defective photonic crystal  material. Int J Mod Phys B 2020; 35(1): 2150012. DOI:  10.1142/S0217979221500120.
 
- Cathy M, Gareth J, et al. On-chip  cavity-enhanced absorption spectroscopy using a white light-emitting diode and  polymer mirrors. Lab on a Chip 2015; 15: 711-717. DOI:  10.1039/C4LC01264J.
 
- Akhilesh K, Charusluk V, et al. VOC  biomarker monitoring for diabetes through exhaled breath using Ag/P-TiO2  composite plasmonic sensor. IEEE Sens J 2021; 21(20): 22631-22637. DOI:  10.1109/JSEN.2021.3104766.
 
- Akhilesh K, Vinod K, et al. SPR  based optical fiber refractive index sensor using silver nanowire assisted  CSMFC. IEEE Photon Technol Lett 2020; 32(8): 465-468. DOI:  10.1109/LPT.2020.2980470.
 
- Nunzio C, et al. Proof of concept  for a quick and highly sensitive on-site detection of SARS-CoV-2 by plasmonic  optical fibers and molecularly imprinted polymers. Sensors 2021; 21(5):  1681. DOI: 10.3390/s21051681.
 
- Muhammad U, Menal K. SARS-CoV-2 Detection  using optical fiber based sensor method. Sensors 2022; 22(3): 751. DOI:  10.3390/s22030751.
 
- Kneipp J. Interrogating cells,  tissues, and live animals with new generations of surface-enhanced Raman  scattering probes and labels. J ACS Nano 2017; 11(2): 1136-1141. DOI:  10.1021/acsnano.7b00152.
 
- Singh S, et al. Impacts of  introducing and lifting nonpharmaceutical interventions on COVID-19 daily  growth rate and compliance in the United States. Proc Natl  Acad Sci USA 2021; 118(12): e2021359118. DOI: 10.1073/pnas.2021359118.
 
- Monkawa  A, Takimoto Y, Nakagawa T, et al. Ultra-highly sensitive detection of influenza  virus by localized surface-plasmon resonance sensor. Res Square 2021; 1: 1-17.  Source: <https://assets.researchsquare.com/files/rs-879879/v1/07758a1a-f369-4474-b7e7-49748057a9b7.pdf?c=1635916242>.  DOI: 10.21203/rs.3.rs-879879/v1.
 
- Henriquez  L, Acuna M, Rojas A. Biosensors for the detection of bacterial and viral  clinical pathogens. Sensors 2020; 20(23): 6926. DOI: 10.3390/s20236926.
 
- Samson R, Navale R, Dharne S.  Biosensors: frontiers in rapid detection of COVID-19. Biotech 2020; 10:  385. DOI: 10.1007/s13205-020-02369-0.
 
- Chaves F, Elsayed A, Mehaney A, et  al. Defect mode modulation for a protein solution cavity surrounded by graphene  and nanocomposite layers. Optik 2021; 242: 167161. DOI:  10.1016/j.ijleo.2021.167161.
 
- Taya A, Daher G, Colak I. Highly sensitive nano-sensor  based on a binary photonic crystal for the detection of mycobacterium  tuberculosis bacteria. J Mater Sci  Mater Electron 2021; 32(1): 28406-28416. DOI: 10.1007/s10854-021-07220-7.
 
- Joannopoulos JD. Photonic crystals:  Molding the flow of light. Princeton: Princeton University Press; 1995.
 
- Shkondin E, Takayama O, Aryaee Panah  ME, et al. Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as  anisotropic metamaterials. Opt Mater Express 2017; 7(11): 1606-1627.  DOI: 10.1364/OME.7.001606.
 
- Tinga WR, Voss WAG, Blossey DF.  Generalized approach to multiphase dielectric mixture theory. J Appl  Phys 1973; 44: 3897. DOI: 10.1063/1.1662868.
 
- Sarkar S, Gupta V, Kumar M, et al.  Hybridized guided-mode resonances via colloidal plasmonic self-assembled  grating. ACS Appl Mater Interfaces 2019; 11(14): 13752-13760. DOI:  10.1021/acsami.8b20535.
 
- Belyakov V. Diffraction optics of  complex-structured periodic media. 2nd ed. Cham, Switzerland: Springer  Nature Switzerland AG; 2019. ISBN: 978-3-319-43481-0.
 
- Efimov IM, Vanyushkin NA, Gevorgyan  AH, Golik SS. Optical biosensor based on a photonic crystal with a defective  layer designed to determine the concentration of SARS-CoV-2 in water. Physica  Scripta 2022; 97(5): 055506. DOI: 10.1088/1402-4896/ac5ff7.
 
- Markel V. Introduction to the  Maxwell Garnett approximation: tutorial. J Opt Soc Am A 2016; 33(7):  1244-1256. DOI: 10.1364/JOSAA.33.001244.
 
- Bordo V. Theory of light reflection  and transmission by a plasmonic nanocomposite slab: Emergence of broadband  perfect absorption. arXiv Preprint. 2021. Source: <https://arxiv.org/abs/2101.09681>.
 
- Efimov IM, Vanyushkin NA, Gevorgyan  AH. Peculiarities of the electromagnetic field distribution inside a 1D  photonic crystal with a defect layer. Bull Russ Acad Sci: Phys 2022;  86(1): S60-S65. DOI: 10.3103/S1062873822700393.
 
- Yeh P. Optical waves in layered  media. New York: Wiley; 1988.
 
- Yariv A, Yeh P. Optical waves in  crystals. New York: Wiley; 1984.
 
- Vanyushkin NA, Gevorgyan AH, Golik  SS. Scattering of a plane wave by an inhomogeneous 1D dielectric layer with  gradient refractive index. Opt Mater 2022; 127: 112306. DOI:  10.1016/j.optmat.2022.112306.
 
- Hale G, Querry M. Optical constants  of water in the 200-nm to 200-μm wavelength region. Appl Opt 1973; 12(3): 555-563. DOI:  10.1364/AO.12.000555.
 
- Ermolinskiy P, et al. Red blood cell  in the field of a beam of optical tweezers. Quantum Electron 2022;  52(1): 22-27. DOI: 10.1070/QEL17962.
 
- Cross T, Opella S. Solid-state NMR  structural studies of peptides and proteins in membranes. Curr Opin  Struct Biol 1994; 4(4): 574-581. DOI: 10.1016/S0959-440X(94)90220-8.
 
- Harlepp S, et al. Hemodynamic forces  can be accurately measured in vivo with optical tweezers. Mol Biol Cell  2017; 28(23): 3252-3260. DOI: 10.1091/mbc.e17-06-0382.
 
- Rowe D, et al. Complex refractive  index spectra of whole blood and aqueous solutions of anticoagulants,  analgesics and buffers in the mid-infrared. Sci Rep 2017; 7(1): 7356.  DOI: 10.1038/s41598-017-07842-0.
 
- Li D, Zhou H, Hui X, et al. Plasmonic biosensor  augmented by a genetic algorithm for ultra-rapid, label-free, and  multi-functional detection of COVID-19. Anal Chem 2021; 93(27): 9437-9444. DOI: 10.1021/acs.analchem.1c01078.
 
- Valerio G, Maneesh N, Leal L, et al.  Ultrarapid on-site detection of SARS-CoV-2 infection using simple ATR-FTIR  spectroscopy and an analysis algorithm: High sensitivity and specificity. Anal  Chem 2021; 93(5): 2950-2958. DOI: 10.1021/acs.analchem.0c04608.
 
- Gao L, Lemarchand F, Lequime M.  Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric  reverse engineering on single and bi-layer designs. J Eur Opt Soc Rapid  Publ 2013; 8: 3010. DOI: 10.2971/jeos.2013.13010.
 
- Sarkar S, Gupta V, Kumar M, Schubert  J, Probst PT, Joseph J, König TAF. Hybridized guided-mode resonances via  colloidal plasmonic self-assembled grating. ACS Appl Mater Interfaces  2019; 11(14): 13752-13760. DOI: 10.1021/acsami.8b20535. 
- Zaky A, et al. Gas sensing applications using magnetized  cold plasma multilayers. Opt Quantum Electron 2022; 54(4): 217-230. DOI:  10.1007/s11082-022-03594-y.
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20