(47-4) 09 * << * >> * Russian * English * Content * All Issues

Evaluation of the influence of surface irregularity of optical crystal microresonators on their dispersion characteristics
A.N. Danilyn 1, A.I. Yurin 2,4, N.M. Kondratyev 1, D.D. Ruzhitskaya 1, N.Yu. Dmitriev 1, F.V. Bulygin 3, S.G. Semenchinsky 3, M.I. Krasivskaya 2, K.N. Min’kov 1

Russian Quantum Center,
121205, Moscow, Territory of the Skolkovo Innovation Center, Bolshoy Boulevard, 30, building 1;
HSE University, 101000, Moscow, Russia, Myasnitskaya 20;
All-Russian Scientific Research Institute of Metrological Service, 119361, Moscow, Russia, Ozernaya 46;
All-Russian Scientific Research Institute for Optical and Physical Measurements,
119361, Moscow, Russia, Ozernaya 46

 PDF, 1248 kB

DOI: 10.18287/2412-6179-CO-1100

Pages: 580-587.

Full text of article: Russian language.

Abstract:
Advantages and prospects of using optical microresonators for the development of measuring instruments based on frequency combs are described. A principle of a frequency comb generator based on an optical microresonator is considered. An example of modeling the properties of microresonators used to generate optical frequency combs is considered. The influence of the nonuniformity of the optical microresonator’s generatrix on the value of the total dispersion has been studied. It is shown that the presence of nonuniformity on the surface affects the dispersion parameters and can also lead to the effect of mode shape splitting in microresonators. We have shown that this effect is particularly dependent on the position and the value of the depth of nonuniformity.

Keywords:
whispering-gallery-mode microresonators, finite element method, dispersion engineering.

Citation:
Danilyn AN, Yurin AI, Kondratyev NM, Ruzhitskaya DD, Dmitriev NY, Bulygin FV, Semenchinskiy SG, Krasivskaya MI, Min’kov KN. Evaluation of the influence of surface irregularity of optical crystal microresonators on their dispersion characteristics. Computer Optics 2023; 47(4): 580-587. DOI: 10.18287/2412-6179-CO-1100.

Acknowledgements:
This work was supported by the All-Russian Research Institute for Optical and Physical Measurements Federal State Unitary Enterprise (VNIIOFI). We also acknowledge the Foundation for the Advancement of Theoretical Physics and Mathematics "BASIS" for personal support.

References:

  1. Hänsch TV. Passion for precision [In Russian]. Uspekhi Fizicheskikh Nauk 2006; 176(12): 1368-1380.
  2. Hall JL. Determining and measuring optical frequencies: the future of optical clocks – and more [In Russian]. Uspekhi Fizicheskikh Nauk 2006; 176(12): 1353-1367.
  3. Gorodetsky ML. Optical microresonators with a giant Q-factor [In Russian]. Moscow: "Fizmatlit" Publisher; 2011.
  4. Chuprina IN, Kalachev AA. Optimizing the dispersion properties of a ring microresonator. Computer Optiks 2017; 41(2): 155-159. DOI: 10.18287/2412-6179-2017-41-2-155-159.
  5. Strekalov DV, Marquardt C, Matsko AB, Schwefel HG, Leuchs G. Nonlinear and quantum optics with whispering gallery resonators. J Opt 2016; 18(12): 123002. DOI: 10.1088/2040-8978/18/12/123002.
  6. Lin G, Coillet A, Chembo YK. Nonlinear photonics with high-Q whispering-gallery-mode resonators. Adv Opt Photonics 2017; 9(4): 828-890. DOI: 10.1364/AOP.9.000828.
  7. Kippenberg TJ, Holzwarth R, Diddams SA. Microresonator-based optical frequency combs. Science 2011; 332: 555-559. DOI: 10.1126/science.1193968.
  8. Liang W, Ilchenko VS, Savchenkov AA, Matsko AB, Seidel D, Maleki L. Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser. Opt Lett 2010; 35(16): 2822-2824. DOI: 10.1364/OL.35.002822.
  9. Pasquazi A, Peccianti M, Razzari L, et al. Micro-combs: A novel generation of optical sources. Phys Rep 2018; 729: 1-81. DOI: 10.1016/j.physrep.2017.08.004.
  10. Kippenberg TJ, Gaeta AL, Lipson M, Gorodetsky ML. Dissipative Kerr solitons in optical microresonators. Science 2018; 361(6402): eaan8083. DOI: 10.1126/science.aan8083.
  11. Lobanov VE, Likhachev G, Kippenberg TJ, Gorodetsky ML. Frequency combs and platicons in optical microresonators with normal GVD. Opt Express 2015; 23: 7713. DOI: 10.1364/OE.23.007713.
  12. Lobanov VE, Kondratiev NM, Shitikov AE, Galiev RR, Bilenko IA. Generation and dynamics of solitonic pulses due to pump amplitude modulation at normal group-velocity dispersion. Phys Rev A 2019; 100: 013807. DOI: 10.1103/PhysRevA.100.013807.
  13. Pavlov NG, Likhachev G, Koptyaev S, Lucas V, Karpov M, Kondratiev NM, Bilenko IA, Kippenberg TJ, Gorodetsky ML. Soliton dual frequency combs in crystalline microresonators. Opt Lett 2017; 42: 514. DOI: 10.1364/OL.42.000514.
  14. Galie RR, Pavlov NG, Kondratiev NM, Koptyaev S, Lobanov VE, Voloshin AS, Gorodnitskiy AS, Gorodetsky ML. Spectrum collapse, narrow linewidth, and Bogatov effect in diode lasers locked to high-Q optical microresonators. Opt Express 2018; 26: 30509. DOI: 10.1117/12.2555863.
  15. Kondratiev NM, Lobanov VE, Cherenkov AV, Voloshin AS, Pavlov NG, Koptyaev S, Gorodetsky ML. Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt Express 2017; 25(23): 28167-28178. DOI: 10.1364/OE.25.028167.
  16. Raja AS, Voloshin AS, Guo H, Agafonova SE, Liu J, Gorodnitskiy AS, Karpov M, Pavlov NG, Lucas E, Galiev RR, Shitikov AE, Jost JD, Gorodetsky ML, Kippenberg TJ. Electrically pumped photonic integrated soliton microcomb. Nat Commun 2019; 10(1): 680. DOI: 10.1038/s41467-019-08498-2.
  17. Degtyarev SA, Podlipnov VV, Verma P, Khonina SN. 3D-simulation of silicon micro-ring resonator with Comsol. Proc SPIE 2016; 10224: 102241L. DOI: 10.1117/12.2266783.
  18. Min’kov KN, Likhachev GV, Pavlov NG, Danilin AN, Shitikov AE, Lonshakov EA, Lobanov VE, Bilenko IA, Yurin AI, Bulygin FV. Fabrication of high-Q crystalline whispering gallery mode microcavities using single-point diamond turning. J Opt Technol 2021; 88(6): 348-353. DOI: 10.1364/JOT.88.000348.
  19. Fujii S, Tanabe T. Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation. Nanophotonics 2020; 9(5): 1087-1104. DOI: 10.1515/nanoph-2019-0497.
  20. Grudinin IS, Yu N. Dispersion engineering of crystalline resonators via microstructuring. Optica 2015; 2(3): 221-224. DOI: 10.1364/OPTICA.2.000221.
  21. Riemensberger J, Hartinger K, Herr T, Brasch V, Holzwarth R, Kippenberg TJ. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition. Opt Express 2012; 20: 27661-27669. DOI: 10.1364/OE.20.027661.
  22. Xu C, Ma J, Ke C, et al. Microcavity dispersion engineering for the visible optical frequency comb generation. Appl Phys Lett 2019; 114: 091104. DOI: 10.1063/1.5080126.
  23. Jin X, Wang J, Wang M, Dong Y, Li F, Wang K. Dispersion engineering of a microsphere via multi-layer coating. Appl Opt 2017; 56: 8023-8028. DOI: 10.1364/AO.56.008023.
  24. Liang H, He Y, Luo R, Lin Q. Ultra-broadband dispersion engineering of nanophotonic waveguides. Opt Express 2016; 24: 29444-29451. DOI: 10.1364/OE.24.029444.
  25. Castelli F, Brambilla M, Gatti A, Prati F, Lugiato LA. The LLE, pattern formation and a novel coherent source. Eur Phys J D 2017; 71: 84. DOI: 10.1140/epjd/e2017-70754-1.
  26. Oxborrow M. How to simulate the whispering-gallery modes of dielectric microresonators in FEMLAB/COMSOL. Proc SPIE 2007; 6452: 64520J. DOI: 10.1117/12.714954.
  27. Kondratiev NM, Voloshin AS, Lobanov VE, Bilenko IA. Numerical modeling of WGM microresonator Kerr frequency combs in self-injection locking regime. Proc SPIE 2020; 11358: 113580O. DOI: 10.1117/12.2555863.
  28. Kondratiev NM, Gorodetsky ML.Thermorefractive noise in whispering gallery mode microresonators: Analytical results and numerical simulation. Phys Lett A 2018; 2265: 382. DOI: 10.1016/j.physleta.2017.04.043.
  29. Sellmeier W. Ueber die durch die Aetherschwingungen erregten Mitschwingungen der Körpertheilchen und deren Rückwirkung auf die ersteren, besonders zur Erklärung der Dispersion und ihrer Anomalien. Annalen der Physik 1872; 223(11): 386-403. DOI: 10.1002/andp.18722231105.
  30. Refractive index database. 2021. Source: <https://refractiveindex.info/?shelf=main&book=MgF2&page=Dodge-o>.
  31. Kondratiev NM, Lobanov VE. Modulational instability and frequency combs in whispering-gallery mode microresonators with backscattering. Phys Rev A 2020; 101: 013816. DOI: 10.1103/PhysRevA.101.013816.
  32. Cherenkov AV, Lobanov VE, Gorodetsky ML. Dissipative Kerr solitons and Cherenkov radiation in optical microresonators with third-order dispersion. Phys Rev A 2017; 95: 033810. DOI: 10.1103/PhysRevA.95.033810.
  33. Brasch V, Geiselmann M, Herr T. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 2016; 351(6271): 357-360. DOI: 10.1364/CLEO_SI.2015.STh4N.1.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20