(47-5) 03 * << * >> * Russian * English * Content * All Issues

Six-wave interaction with double wavefront reversal in multimode waveguides with Kerr and thermal nonlinearities
V.V. Ivakhnik 1, D.R. Kapizov 1, V.I. Nikonov 1

Samara National Research University, 443086, Russia, Samara, Moscow highway 34

 PDF, 982 kB

DOI: 10.18287/2412-6179-CO-1313

Pages: 702-709.

Full text of article: Russian language.

Abstract:
Spatial selectivity of six-wave radiation converters, which perform double wavefront conjugation of a signal wave in long multimode waveguides with both Kerr and thermal nonlinearities, is studied. Waveguides with infinitely conductive surfaces, with a parabolic refractive index profile, were used. It is shown that the spatial structure of the first pump wave does not affect the quality of doubled wavefront conjugation in a waveguide with Kerr nonlinearity, but only slightly affects the quality of doubled wavefront conjugation in a waveguide with thermal nonlinearity. A decrease in the radius of the second Gaussian pump wave on the back face of the waveguide leads to an improvement in the quality of the doubled wavefront reversal both in the case of six-wave interaction in the Kerr and thermal nonlinearities. In a parabolic waveguide, when the zero mode of the waveguide is excited by pump waves at a constant frequency of the second pump wave, an increase in the frequency of the first pump wave worsens the quality of the double wavefront conjugation.

Keywords:
six-wave radiation converter, double wavefront reversal, Kerr nonlinearity, thermal nonlinearity.

Citation:
Ivakhnik VV, Kapizov DR, Nikonov VI. Six-wave interaction with double wavefront reversal in multimode waveguides with Kerr and thermal nonlinearities. Computer Optics 2023; 47(5): 702-709. DOI: 10.18287/2412-6179-CO-1313.

References:

  1. Сharra F, Nunzi JM. Nondegenerate multiwave mixing in polydiacetylene: phase conju-gation with frequency. J Opt Soc Am B 1991; 8(3): 570-577.
  2. Ivakhnik VV, Nikonov VI. Double phase conjugation with frequency conversion under nondegenerate six-wave mixing. Optics Spectrosc 1993; 75(2): 227-230.
  3. Karpuk SM, Rubanov AS, Tolstik AL. Double phase conjugation in quadratic recording of dynamic holograms in resonance media. Optics Spectrosc 1996; 80(2): 276-280.
  4. Romanov OG, Gorbach DV, Tolstik AL. Frequency transformation of optical vortices upon nondegenerate multiwave interaction in dye solutions. Optics Spectrosc 2010; 108(5): 768-773. DOI: 10.1134/S0030400X10050152.
  5. Zhou H, Liao M, Huang SW, Zhou L, Qiu K, Wong CW. Six-wave mixing induced by free-carrier plasma in silicon nanowire waveguides. Laser Photon Rev 2016; 10: 1054-1061. DOI: 10.1002/lpor.201600124.
  6. Nazemosadat E, Pourbeyram H, Mafi A. Phase matching for spontaneous frequency conversion via four-wave mixing in graded–index multimode optical fibers. J Opt Soc Am B 2016; 33(2): 144-150. DOI: 10.1364/JOSAB.33.000144.
  7. Turitsyn SK, Bednyakova AE, Fedoruk MP, Paperny SB, Clements WRL. Inverse four-wave mixing and selfparametric amplification in optical fibre. Nat Photon 2015; 9(9): 608-614. DOI: 10.1038/NPHOTON.2015.150.
  8. Weng Y, He X, Wang J, Pan Z. All-optical ultrafast wavelength and mode converter based on intermodal four-wave mixing in few-mode fibers. Opt Commun 2015; 348: 7-12. DOI: 10.1016/j.optcom.2015.03.018.
  9. Anjum OF, Guasoni M, Horak P, Jung Y, Petropoulos P, Richardson DJ, Parmigiani F. Polarization-insensitive fourwave-mixing-based wavelength conversion in few-mode optical fibers. J Lightw Technol 2018; 36(17): 3678-3683. DOI: 10.1109/JLT.2018.2834148.
  10. Zhang H, Bigot-Astruc M, Bigot L, Sillard P, Fatome J. Multiple modal and wavelength conversion process of a 10-Gbit/s signal in a 6-LP-mode fiber. Opt Express 2019; 27(11): 15413-15425. DOI: 10.1364/OE.27.015413.
  11. Zel’dovich BYa, Pilipetskiy NF, Shkunov VV. Wavefront reversal [In Russian]. Moscow: “Nauka” Publisher; 1985.
  12. Ivakhnik VV, Nikonov VI, Savelyev MV. Double wavefront reversal at six-wave interaction on the thermal nonlinearity [In Russian]. Physics of Wave Processes and Radiotechnical Systems 2015; 18(1): 13-17.
  13. Ivakhnik VV, Nikonov VI. Six-wave interaction with double wavefront reversal on thermal nonlinearity in a medium with a nonlinear absorption coefficient [In Russian]. Computer Optics 2017; 41(3): 315-321. DOI: 10.18287/2412-6179-2017-41-3-315-321.
  14. Vinogradova MB, Rudenko OV, Sukhorukov AP. Wave theory [In Russian]. Moscow: “Fizmatlit” Publisher; 1979.
  15. Voronin ES, Strizhevskiĭ VL. Parametric up-conversion of infrared radiation and its applications. Soviet Physics Uspekhi 1979; 22(1): 26-45. DOI: 10.1070/PU1979v022n01ABEH005414.
  16. Voronin ES, Petnikova VM, Shuvalov VV. Use of degenerate parametric processes for wavefront correction (review). Sov J Quantum Electron 1981; 11(5): 551-561. DOI: 10.1070/QE1981v011n05ABEH006899.
  17. Marcuse D. Light transmission optics. New York: Van Nostrand Reinhold Co; 1982. ISBN: 978-0-442-26309-6.
  18. Ivakhnik VV, Kapizov DR, Nikonov VI. Quality of wavefront reversal for four-wave interaction in a multimode waveguide with thermal nonlinearity [In Russian]. Computer Optics 2022; 46(1): 48-55. DOI: 10.18287/2412-6179-CO-1011.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20