(47-5) 04 * << * >> * Russian * English * Content * All Issues

High-order optical Hall effect at the tight focus of laser radiation
V.V. Kotlyar 1,2, S.S. Stafeev 1,2, E.S. Kozlova 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 913 kB

DOI: 10.18287/2412-6179-CO-1310

Pages: 710-715.

Full text of article: Russian language.

Abstract:
In this work, by the Richards-Wolf method, which describes the behavior of electromagnetic radiation at the tight focus, it is shown that high-order spin and orbital Hall effects take place in the focal plane. It is shown that when focusing a linearly polarized optical vortex with unit topological charge, four local subwavelength regions are formed in the focal plane, in which directions of the longitudinal projection of the spin angular momentum are opposite in the neighboring regions. That is, photons falling into neighboring regions in the focus have the opposite spin. This is the spin Hall effect of the 2nd order. It is also shown that when tightly focusing of superposition of cylindrical vector beams of the m-th order and zero order, 2m subwavelength regions are formed in the plane of tight focus, in which directions of the longitudinal projection of the orbital angular momentum are opposite in the neighboring regions. That is, photons falling into the neighboring regions at the focus have the opposite-sign on-axis projections of the orbital angular momentum. This is the orbital Hall effect of the m-th order.

Keywords:
Richards-Wolf formalism, spin Hall effect, orbital Hall effect, cylindrical vector beam, spin angular momentum, orbital angular momentum.

Citation:
Kotlyar VV, Stafeev SS, Kozlova ES. High-order optical Hall effect at the tight focus of laser radiation. Computer Optics 2023; 47(5): 710-715. DOI: 10.18287/2412-6179-CO-1310.

Acknowledgements:
This work was supported by the Russian Science Foundation under grant #22-22-00265.

References:

  1. Onoda M, Marakami S, Nagaosa N. Hall effect of light. Phys Rev Lett 2004; 93: 083901. DOI: 10.1103/PhysRevLett.93.083901.
  2. Bliokh KY, Bliokh YP. Topological spin transport of photons: the optical Magnus effect and Berry phase. Phys Lett A 2004; 333(3-4): 181-186. DOI: 10.1016/j.physleta.2004.10.035.
  3. Bliokh KY, Bliokh YP. Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet. Phys Rev Lett 2006; 96: 073903. DOI: 10.1103/PhysRevLett.96.073903.
  4. Kavokin A, Malpuech G, Glazov M. Optical spin Hall effect. Phys Rev Lett 2005; 95: 136601. DOI: 10.1103/PhysRevLett.95.136601.
  5. Hosten O, Kwiat P. Observation of the spin Hall effect of light via weak measurements. Science 2008; 319(5864): 787-790. DOI: 10.1126/science.1152697.
  6. Ling X, Zhou X, Huang K, Liu Y, Qiu C, Luo H, Wen S. Recent advances in the spin Hall effect of light. Pep Prog Phys 2017; 80: 066401. DOI: 10.1088/1361-6633/aa5397.
  7. Liu S, Chen S, Wen S, Luo H. Photonics spin Hall effect: fundamentals and emergent applications. Opto-Electr Sci 2022; 1(7): 220007. DOI: 10.29026/oes.2022.220007.
  8. Ling X, Yi X, Zhou X, Liu Y, Shu W, Luo H, Wen S. Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. Appl Phys Lett 2014; 105: 151101. DOI: 10.1063/1.4898190.
  9. Yin X, Ye Z, Rho J, Wang Y, Zhang X. Photonic spin Hall effect at metasurfaces. Science 2013; 339(6126): 1405. DOI: 10.1126/science.1231758.
  10. Kumar RN, Yatish, Gupta SD, Ghosh N, Banerjee A. Probing the rotational spin-Hall effect in a structured Gaussian beam. Phys Rev A 2022; 105: 023503. DOI: 10.1103/PhysRevA.105.023503.
  11. Zhang J, Zhou X-X, Ling X-H, Chen S-Z, Luo H-L, Wen S-C. Orbit-orbit interaction and photonics orbital Hall effect in reflection of a light beam. Chin Phys B 2014; 23(6): 064215. DOI: 10.1088/1674-1056/23/6/064215.
  12. Fu S, Guo C, Liu G, Li Y, Yin H, Li Z, Chen Z. Spin-orbit optical Hall effect. Phys Rev Lett 2019; 123: 243904. DOI: 10.1103/PhysRevLett.123.243904.
  13. Zhang F, Guo Y, Pu M, Li X, Ma X, Luo X. Metasurfaces enabled by asymmetric photonic spin-orbit interactions. Opto-Electr Eng 2020; 47(10): 200366. DOI: 10.12086/oee.2020.200366.
  14. Shu W, Lin C, Wu J, Chen S, Ling X, Zhou X, Luo H, Wen S. Three-dimensional spin Hall effect of light in tight focusing. Phys Rev A 2020; 101: 023819. DOI: 10.1103/PhysRevA.101.023819.
  15. Bliokh KY, Ostrovskaya EA, Alonso MA, Rodriguez-Herrera OG, Lara D, Dainty C. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems. Opt Express 2011; 19(27): 26132-26149. DOI: 10.1364/OE.19.026132.
  16. Ling X, Yi X, Zhou X, Liu Y, Shu W, Luo H, Wen S. Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. Appl Phys Lett 2014; 105: 151101. DOI: 10.1063/1.4898190.
  17. Khonina SN, Golub I. Vectorial spin Hall effect of light upon tight focusing. Opt Lett 2022; 47(9): 2166-2169. DOI: 10.1364/OL.457507.
  18. Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc R Soc A Math Phys Eng Sci 1959; 253(1274): 358-379. DOI: 10.1098/rspa.1959.0200.
  19. Kotlyar VV, Nalimov AG, Stafeev SS. Exploiting the circular polarization of light to obtain a spiral energy flow at the subwavelength focus. J Opt Soc Am B 2019; 36(10): 2850-2855. DOI: 10.1364/JOSAB.36.002850.
  20. Kotlyar VV, Kovalev AA, Nalimov AG. Energy density and energy flux in the focus of an optical vortex: reverse flux of light energy. Opt Lett 2018; 43(12): 2921-2924. DOI: 10.1364/OL.43.002921.
  21. Kotlyar V, Stafeev S, Zaitsev V, Kozlova E. Spin-orbital conversion with the tight focus of an axial superposition of a high-order cylindrical vector beam and a beam with linear polarization. Micromachines 2022; 13(7): 1112. DOI: 10.3390/mi13071112.
  22. Kotlyar VV, Kovalev AA, Stafeev SS, Nalimov AG, Rasouli S. Tightly focusing vector beams containing V-point polarization singularities. Opt Las Tech 2022; 145: 107479. DOI: 10.1016/j.optlastec.2021.107479.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20