(47-6) 01 * << * >> * Russian * English * Content * All Issues

Second-order optical differentiation of a 3D light beam at oblique incidence using a multilayer metal-dielectric structure
A.I. Kashapov 1,2, L.L. Doskolovich 1,2, E.A. Bezus 1,2, N.V. Golovastikov 1,2, D.A. Bykov 1,2

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS,
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University,
443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1416 kB

DOI: 10.18287/2412-6179-CO-1311

Pages: 845-855.

Full text of article: Russian language.

Abstract:
We investigate the optical implementation of a second-order differentiation operation using a metal-dielectric layered structure in the oblique incidence geometry. It is shown that the transformation of the profile of a three-dimensional light beam occurring upon its reflection from a layered structure can be described using the theory of linear systems. The transfer function of the corresponding linear system is obtained, and it is shown that if a layered structure has a reflection zero of the second order with respect to the spatial frequency for one of the polarizations, the transformation performed by the structure corresponds to the weighted sum of the second derivatives of the incident beam profile with respect to the spatial coordinates. Using the presented theoretical description, layered metal-dielectric structures for computing the second derivative with respect to one of the spatial coordinates and for computing the Laplace operator of the profile of a three-dimensional linearly polarized light beam are calculated. The presented numerical simulation results demonstrate high-quality computation of these operators.

Keywords:
optical differentiation, second derivative, Laplace operator, layered structure, transfer function.

Citation:
Kashapov AI, Doskolovich LL, Bezus EA, Golovastikov NV, Bykov DA. Second-order optical differentiation of a 3D light beam at oblique incidence using a multilayer metal-dielectric structure. Computer Optics 2023; 47(6): 845-855. DOI: 10.18287/2412-6179-CO-1311.

Acknowledgements:
This work was funded by the Russian Science Foundation under project No 19-19-00514 (design and investigation of double MDM structures) and the RF Ministry of Science and Higher Education under the government project of the Federal Research Center “Crystallography and Photonics” RAS under agreement 007-GZ/Ch3363/26 (development of a software tool for the numerical simulation of diffraction of three-dimensional optical beams).

References:

  1. Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N. Performing mathematical operations with metamaterials. Science 2014; 343(6167): 160-163. DOI: 10.1126/science.1242818.
  2. Zhou Y, Zheng H, Kravchenko II, Valentine J. Flat optics for image differentiation. Nat Photonics 2020; 14: 316-323. DOI: 10.1038/s41566-020-0591-3.
  3. Estakhri NM, Edwards B, Engheta N. Inverse-designed metastructures that solve equations. Science 2019; 363(6433): 1333-1338. DOI: 10.1126/science.aaw2498.
  4. Bykov DA, Doskolovich LL, Soifer VA. Temporal differentiation of optical signals using resonant gratings. Opt Lett 2011; 36(17): 3509-3511. DOI: 10.1364/OL.36.003509.
  5. Bykov DA, Doskolovich LL, Soifer VA. Single-resonance diffraction gratings for time-domain pulse transformations: integration of optical signals. J Opt Soc Am A 2012; 29(8): 1734-1740. DOI: 10.1364/JOSAA.29.001734.
  6. Dong Z, Si J, Yu X, Deng X. Optical spatial differentiator based on subwavelength high-contrast gratings. Appl Phys Lett 2018; 112(18): 181102. DOI: 10.1063/1.5026309.
  7. Bykov DA, Doskolovich LL, Morozov AA, Podlipnov VV, Bezus EA, Verma P, Soifer VA. First-order optical spatial differentiator based on a guided-mode resonant grating. Opt Express 2018; 26(8): 10997-11006. DOI: 10.1364/OE.26.010997.
  8. Yang W, Yu X, Zhang J, Deng X. Plasmonic transmitted optical differentiator based on the subwavelength gold gratings. Opt Lett 2020; 45(8): 2295-2298. DOI: 10.1364/OL.390566.
  9. Huang J, Zhang J, Zhu T, Ruan Z. Spatiotemporal differentiators generating optical vortices with transverse orbital angular momentum and detecting sharp change of pulse envelope. Laser Photonics Rev 2022; 16(5): 2100357. DOI: 10.1002/lpor.202100357.
  10. Doskolovich LL, Bykov DA, Bezus EA, Soifer VA. Spatial differentiation of optical beams using phase-shifted Bragg grating. Opt Lett 2014; 39(5): 1278-1281. DOI: 10.1364/OL.39.001278.
  11. Golovastikov NV, Doskolovich LL, Bezus EA, Bykov DA, Soifer VA. An optical differentiator based on a three-layer structure with a W-shaped refractive index profile. J Exp Theor Phys 2018; 127(2): 202-209. DOI: 10.1134/S1063776118080174.
  12. Kashapov AI, Doskolovich LL, Bezus EA, Bykov DA, Soifer VA. Spatial differentiation of optical beams using a resonant metal-dielectric-metal structure. J Opt 2021; 23(2): 023501. DOI: 10.1088/2040-8986/abe63b.
  13. Doskolovich LL, Kashapov AI, Bezus EA, Bykov DA. Optical properties of cascaded metal-dielectric-metal structures and their application to the differentiation of optical signals. Photonics Nanostruct 2022; 52: 101069. DOI: 10.1016/j.photonics.2022.101069.
  14. Zhu T, Zhou Y, Lou Y, Ye H, Qiu M, Ruan Z, Fan S. Plasmonic computing of spatial differentiation. Nat Commun 2017; 8: 15391. DOI: 10.1038/ncomms15391.
  15. Zhou Y, Zhan J, Chen R, Chen W, Wang Y, Shao Y, Ma Y. Analogue optical spatiotemporal differentiator. Adv Optical Mater 2021; 9(10): 2002088. DOI: 10.1002/adom.202002088.
  16. Berger NK, Levit B, Fischer B, Kulishov M, Plant DV, Azaña J. Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating. Opt Express 2007; 15(2): 371-381. DOI: 10.1364/OE.15.000371.
  17. Kulishov M, Azaña J. Design of high-order all-optical temporal differentiators based on multiple-phase-shifted fiber Bragg gratings. Opt Express 2007; 15(10): 6152-6166. DOI: 10.1364/oe.15.006152.
  18. Dong J, Zheng A, Gao D, Liao S, Lei L, Huang D, Zhang X. High-order photonic differentiator employing on-chip cascaded microring resonators. Opt Lett 2013; 38(5): 628-630. DOI: 10.1364/OL.38.000628.
  19. Kazanskiy NL, Serafimovich PG, Khonina SN. Use of photonic crystal cavities for temporal differentiation of optical signals. Opt Lett 2013; 38(7): 1149-1151. DOI: 10.1364/OL.38.001149.
  20. Karimi A, Zarifkar A, Miri M. Subpicosecond flat-top pulse shaping using a hybrid plasmonic microring-based temporal differentiator. J Opt Soc Am B 2019; 36(7): 1738-1747. DOI: 10.1364/JOSAB.36.001738.
  21. Pors A, Nielsen MG, Bozhevolnyi SI. Analog computing using reflective plasmonic metasurfaces. Nano Lett 2015; 15(1): 791-797. DOI: 10.1021/nl5047297.
  22. Chizari A, Abdollahramezani S, Jamali MV, Salehi JA. Analog optical computing based on a dielectric meta-reflect array. Opt Lett 2016; 41(15), 3451-3454. DOI: 10.1364/OL.41.003451.
  23. Bykov DA, Doskolovich LL, Bezus EA, Soifer VA. Optical computation of the Laplace operator using phase-shifted Bragg grating. Opt Express 2014; 22(21): 25084-25092. DOI: 10.1364/OE.22.025084.
  24. Wesemann L, Panchenko E, Singh K, Gaspera ED, Gómez DE, Davis TJ, Roberts A. Selective near-perfect absorbing mirror as a spatial frequency filter for optical image processing. APL Photonics 2019; 4(10): 100801. DOI: 10.1063/1.5113650.
  25. Guo C, Xiao M, Minkov M, Shi Y, Fan S. Photonic crystal slab Laplace operator for image differentiation. Optica 2018; 5(3): 251-256. DOI: 10.1364/OPTICA.5.000251.
  26. Pan D, Wan L, Ouyang M, Zhang W, Potapov AA, Liu W, Liang Z, Feng T, Li Z. Laplace metasurfaces for optical analog computing based on quasi-bound states in the continuum. Photon Res 2021; 9(9): 1758-1766. DOI: 10.1364/PRJ.426827.
  27. Born M, Wolf E. Principles of optics. Electromagnetic theory of propagation, interference and diffraction of light. 7th ed. Cambridge: Cambridge University Press; 2013. ISBN: 0-521-64222-1.
  28. Polyanskiy MN. Refractive index database. Source: <https://refractiveindex.info>.
  29. Moharam MG, Pommet DA, Grann EB, Gaylord TK. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. J Opt Soc Am A 1995; 12(5): 1077-1086. DOI: 10.1364/JOSAA.12.001077.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20