(47-6) 02 * << * >> * Russian * English * Content * All Issues

Inverse scattering transform algorithm for the Manakov system
A.E. Chernyavsky 1, L.L. Frumin 1

Institute of Automation and Electrometry SB RAS,
630090, Novosibirsk, Russia, Academician Koptyug Ave., 1

 PDF, 1182 kB

DOI: 10.18287/2412-6179-CO-1298

Pages: 856-862.

Full text of article: English language.

Abstract:
A numerical algorithm is described for solving the inverse spectral scattering problem associated with the Manakov model of the vector nonlinear Schrödinger equation. This model of wave processes simultaneously considers dispersion, nonlinearity and polarization effects. It is in demand in nonlinear physical optics and is especially perspective for describing optical radiation propagation through the fiber communication lines. In the presented algorithm, the solution to the inverse scattering problem based on the inversion of a set of nested matrices of the discretized system of Gelfand–Levitan–Marchenko integral equations, using a block version of the Levinson-type Toeplitz bordering algorithm. Numerical tests carried out by comparing calculations with known exact analytical solutions confirm the stability and second order of accuracy of the proposed algorithm. We also give an example of the algorithm application to simulate the collision of a differently polarized pair of Manakov optical vector solitons.

Keywords:
Manakov system, polarization, dispersion, inverse scattering problem, algorithm.

Citation:
Chernyavsky AE, Frumin LL. Inverse scattering transform algorithm for the Manakov system. Computer Optics 2023; 47(6): 856-862. DOI: 10.18287/2412-6179-CO-1298.

Acknowledgements:
This work was supported by the Russian Science Foundation (RSF Grant No. 22-22-00653).

References:

  1. Manakov SV. On the theory of two-dimensional stationary self-focusing electromagnetic waves. Sov Phys JETP 1974; 38(2): 248-253.
  2. Agrawal GP. Fiber-optic communication systems. 4th ed. Hoboken, New Jersey: John Wiley & Sons Inc; 2010. ISBN: 978-0-470-50511-3.
  3. Menyuk CR, Marks BS. Interaction of polarization mode dispersion and nonlinearity in optical fiber transmission systems. J Lightw Technol 2006; 24: 2806-2826.
  4. Goossens J-W, Yousefi MI, Jaouën Y, Hafermann H. Polarization-division multiplexing based on the nonlinear Fourier transform. Opt Express 2017; 25: 26437-26452.
  5. Zakharov VE, Shabat AB. Exact theory of two-dimensional self-focusing and onedimensional self-modulation of waves in nonlinear media. Sov Phys JETP 1972; 34(1): 62-69.
  6. Novikov S, Manakov SV, Pitaevskii LP, Zakharov VE. Theory of solitons. The inverse scattering method. New York: Consultants Bureau; 1984. ISBN: 0-306-10977-8.
  7. Maimistov AI, Basharov AM, Elyutin SO, Sklyarov YM. Present state of self-induced transparency theory. Phys Rep 1990; 191(1): 1-108. DOI: 10.1016/0370-1573(90)90142-O.
  8. Maimistov AI, Basharov AM. Nonlinear optical waves. Dordrecht: Springer Science and Business Media 2013. ISBN: 978-90-481-5238-4.
  9. Belai OV, Frumin LL, Podivilov EV, Shapiro DA. Efficient numerical method of the fiber Bragg grating synthesis. J Opt Soc Am B 2007; 24(7): 1451-1457. DOI: 10.1364/JOSAB.24.001451.
  10. Frumin LL, Belai OV, Podivilov EV, Shapiro DA. Efficient numerical method for solving the direct Zakharov–Shabat scattering problem. J Opt Soc Am B 2015; 32: 290-296. DOI: 10.1364/JOSAB.32.000290.
  11. Blahut RE. Fast algorithms for digital signal processing. Reading, MA: Addison-Wesley; 1985. ISBN: 978-0-201-10155-3.
  12. Buryak A, Bland-Hawthorn J, Steblina V. Comparison of inverse scattering algorithms for designing ultrabroadband fibre Bragg gratings. Opt Express 2009; 17(3): 1995-2004. DOI: 10.1364/OE.17.001995.
  13. Belai OV, Frumin LL, Podivilov EV, Shapiro DA. Inverse scattering problem for gratings with deep modulation. Laser Phys 2010; 20(2): 318-324. DOI: 10.1134/S1054660X10030023.
  14. Belai OV, Frumin LL, Podivilov EV, Shapiro DA. Inverse scattering for the one-dimensional Helmholtz equation: Fast numerical method. Opt Lett 2008; 33(18): 2101-2103. DOI: 10.1364/OL.33.002101.
  15. Frumin LL, Gelash AA, Turitsyn SK. New approaches to coding information using inverse scattering transform. Phys Rev Lett 2017; 118(22): 223901-223905. DOI: 10.1103/PhysRevLett.118.223901.
  16. Turitsyn SK, Prilepsky JE, Le ST, Wahls S, Frumin LL, Kamalian M, Derevyanko SA. Nonlinear fourier transform for optical data processing and transmission: Advances and perspectives. Optica 2017; 4(3): 307-322. DOI: 10.1364/OPTICA.4.000307.
  17. Aref V, Le ST, Buelow H. Modulation over nonlinear Fourier spectrum: Continuous and discrete spectrum. J Lightw Technol 2018; 36(6): 1289-1295. DOI: 10.1109/JLT.2018.2794475.
  18. Civelli S, Turitsyn SK, Secondini M, Prilepsky JE. Polarization-multiplexed nonlinear inverse synthesis with standard and reduced-complexity NFT processing. Opt Express 2018; 26(13): 17360-17377. DOI: 10.1364/OE.26.017360.
  19. Frumin LL. Algorithms for solving scattering problems for the Manakov model of nonlinear Schrödinger equations. J Inverse Ill Posed Probl 2021; 29(2): 369-383. DOI: 10.1515/jiip-2020-0126.
  20. Belai OV. Fast numerical method of the second order of accuracy for solving the inverse scattering problem [In Russian]. Kvantovaya Elektronika 2022; 52(11): 1039-1043.
  21. Akaike H. Block Toeplitz matrix inversion. SIAM J Appl Math 1973; 24(2): 234-241. DOI: 10.1137/0124024.
  22. Satsuma J, Yajima N. Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media. Prog Theor Phys Supp 1974; 55: 284-306. DOI: 10.1143/PTPS.55.284.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20