(47-6) 03 * << * >> * Russian * English * Content * All Issues
Spin angular momentum of Gaussian beams with several polarization singularities
A.A. Kovalev 1,2, V.V. Kotlyar 1,2
1 IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS,
443001, Samara, Russia, Molodogvardeyskaya 151;
2 Samara National Research University,
443086, Samara, Russia, Moskovskoye Shosse 34
PDF, 1813 kB
DOI: 10.18287/2412-6179-CO-1312
Pages: 863-874.
Full text of article: Russian language.
Abstract:
We study a paraxial vector Gaussian beam with several polarization singularities located on a circle. Such a beam is superposition of a cylindrically polarized Laguerre-Gaussian beam and a linearly polarized Gaussian beam. It is found that although polarization in the initial plane is linear, alternating regions with the different-sign spin angular momentum density are generated upon free-space propagation, showing that a spin Hall effect arises. For an arbitrary transverse plane, it is shown that the spin angular momentum magnitude is maximal on a certain-radius circle. We obtain an approximate expression for the distance to the transverse plane where the spin angular momentum density is maximal. Besides, we derive an optimal radius of the singularity-containing circle in the initial plane for which the maximal spin angular momentum density can be achieved upon propagation. It is revealed that in this case, the energies of the Laguerre-Gaussian beam and the Gaussian beam are equal to each other. We also obtain an expression for the orbital angular momentum density and find it to be defined by the spin angular momentum density, multiplied by –m/2, with m being the upper index of the Laguerre-Gaussian beam, equal to the number of the polarization singularities. An analogy with plane waves reveals that the spin Hall effect arises due to different divergence rates of the linearly polarized Gaussian beam and the cylindrically polarized Laguerre-Gaussian beam.
Keywords:
cylindrical vector beam; radial polarization; polarization singularity; Gaussian beam; Laguerre-Gaussian beam; spin angular momentum; optical spin Hall effect; orbital angular momentum.
Citation:
Kovalev AA, Kotlyar VV. Spin angular momentum of Gaussian beams with several polarization singularities. Computer Optics 2023; 47(6): 863-874. DOI: 10.18287/2412-6179-CO-1312.
Acknowledgements:
The work was partly funded by the Russian Science Foundation under grant #22-12-00137 (Sections "Paraxial light fields with multiple phase or polarization singularities", "Intensity distribution", "Spin angular momentum density", "Orbital angular momentum density", "Analogy with plane waves and revealing the mechanism") and by the RF Ministry of Science and Higher Education within the State Assignment of FSRC "Crystallography and Photonics" RAS (Sections "Introduction", "Numerical simulation", "Conclusion").
References:
- Indebetouw G. Optical vortices and their propagation. J Mod Opt 1993; 40(1): 73-87. DOI: 10.1080/09500349314550101.
- Abramochkin EG, Volostnikov VG. Spiral-type beams. Opt Commun 1993; 102(3-4): 336-350. DOI: 10.1016/0030-4018(93)90406-U.
- Wang Q, Tu CH, Li YN, Wang HT. Polarization singularities: Progress, fundamental physics, and prospects. APL Photonics 2021; 6(4): 040901. DOI: 10.1063/5.0045261.
- Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photon 2009; 1(1): 1-57. DOI: 10.1364/AOP.1.000001.
- Tidwell SC, Ford DH, Kimura WD. Generating radially polarized beams interferometrically. Appl Opt 1990; 29(15): 2234-2239. DOI: 10.1364/AO.29.002234.
- Kovalev AA, Kotlyar VV. Tailoring polarization singularities in a Gaussian beam with locally linear polarization. Opt Lett 2018; 43(13): 3084-3087. DOI: 10.1364/OL.43.003084.
- Kovalev AA, Kotlyar VV. Gaussian beams with multiple polarization singularities. Opt Commun 2018; 423: 111-120. DOI: 10.1016/j.optcom.2018.04.023.
- Wang H, Wojcik CC, Fan S. Topological spin defects of light. Optica 2022; 9(12): 1417-1423. DOI: 10.1364/OPTICA.474612.
- Kavokin A, Malpuech G, Glazov M. Optical spin Hall effect. Phys Rev Lett 2005; 95(13): 136601. DOI: 10.1103/PhysRevLett.95.136601.
- Kim M, Lee D, Kim TH, Yang Y, Park HJ, Rho J. Observation of enhanced optical spin Hall effect in a vertical hyperbolic metamaterial. ACS Photonics 2019; 6(10): 2530-2536. DOI: 10.1021/acsphotonics.9b00904.
- Kim M, Lee D, Ko B, Rho J. Diffraction-induced enhancement of optical spin Hall effect in a dielectric grating. APL Photonics 2020; 5(6): 066106. DOI: 10.1063/5.0009616.
- Stafeev SS, Nalimov AG, Kovalev AA, Zaitsev VD, Kotlyar VV. Circular polarization near the tight focus of linearly polarized light. Photonics 2022; 9(3): 196. DOI: 10.3390/photonics9030196.
- Dienerowitz M, Mazilu M, Reece PJ, Krauss TF, Dholakia K. Optical vortex trap for resonant confinement of metal nanoparticles. Opt Express 2008; 16(7): 4991-4999. DOI: 10.1364/OE.16.004991.
- Dennis MR. Polarization singularities in paraxial vector fields: Morphology and statistics. Opt Commun 2002; 213(4-6): 201-221. DOI: 10.1016/S0030-4018(02)02088-6.
- Cardano F, Karimi E, Marrucci L, de Lisio C, Santamato E. Generation and dynamics of optical beams with polarization singularities. Opt Express 2013; 21(7): 8815-8820. DOI: 10.1364/OE.21.008815.
- Robbins HA. Remark on Stirling's formula. Am Math Mon 1955; 62(1): 26-29. DOI: 10.2307/2308012.
- Berry MV, Jeffrey MR, Mansuripur M. Orbital and spin angular momentum in conical diffraction. J Opt A: Pure Appl Opt 2005; 7(11): 685-690. DOI: 10.1088/1464-4258/7/11/011.
- Berry MV, Liu W. No general relation between phase vortices and orbital angular momentum. J Phys A Math Theor 2022; 55(37): 374001. DOI: 10.1088/1751-8121/ac80de.
- Andrew PK, Williams MAK, Avci E. Optical micromachines for biological studies. Micromachines 2020; 11(2): 192. DOI: 10.3390/mi11020192.
- Favre-Bulle IA, Zhang S, Kashchuk AV, Lenton ICD, Gibson LJ, Stilgoe AB, Nieminen TA, Rubinsztein-Dunlop H. Optical tweezers bring micromachines to biology. Opt Photonics News 2018; 29(4): 40-47. DOI: 10.1364/OPN.29.4.000040.
- Liu YJ, Lee YH, Lin YS, Tsou C, Baldeck PL, Lin CL. Optically driven mobile integrated micro-tools for a lab-on-a-chip. Actuators 2013; 2(2): 19-26. DOI: 10.3390/act2020019.
- Angelsky OV, Bekshaev AYa, Maksimyak PP, Maksimyak AP, Hanson SG, Zenkova CYu. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams. Opt Express 2012; 20(4): 3563-3571. DOI: 10.1364/OE.20.003563.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20