(48-1) 07 * << * >> * Russian * English * Content * All Issues

The spectrum broadening of a single-cycle terahertz pulse caused by phase self-modulation in a nonlinear medium and the spectrum of radiation generated in its field at tripled frequencies
I.R. Artser 1, M.V. Melnik 1, A.N. Tsypkin 1, S.A. Kozlov 1

ITMO University,
197101, Saint Petersburg, Russia, Kronverkskiy ave. 49

 PDF, 951 kB

DOI: 10.18287/2412-6179-CO-1299

Pages: 61-67.

Full text of article: Russian language.

Abstract:
When the number of oscillations in an optical pulse decreases, the emission spectrum generated at triple frequencies and the spectrum of the fundamental pulse, broadened due to phase self-modulation during propagation in a medium with cubic nonlinearity, begin to overlap. This work demonstrates that the overlap magnitude of the spectrum broadening for a single-period terahertz pulse, caused by the emission of triple frequencies and phase self-modulation of the fundamental pulse, is |s| = 0.85. The complex spectra are phase-shifted by p, which mutually weakens these nonlinear effects. For a single-period pulse, the attenuation coefficient is 7.7. The frequency-dependent inhomogeneity of mutual attenuation of nonlinear effects results in the absence of radiation at the triple frequency relative to the frequency of the maximum spectrum of the single-period wave in the nonlinear medium, while the maximum spectrum of the generated high-frequency radiation shifts to quadrupled frequencies. Thus, for terahertz waves with a small number of oscillations, new possibilities for controlling their parameters during nonlinear processes in optical media open up.

Keywords:
terahertz pulse radiation, phase self-modulation, generation of triple frequency radiation, spectrum overlap magnitude, mutual attenuation coefficient of nonlinear effects.

Citation:
Artser IR, Melnik MV, Tsypkin AN, Kozlov SA. The spectrum broadening of a single-cycle terahertz pulse caused by phase self-modulation in a nonlinear medium and the spectrum of radiation generated in its field at tripled frequencies. Computer Optics 2024; 48(1): 61-67. DOI: 10.18287/2412-6179-CO-1299.

Acknowledgements:
This work was financially supported by the Ministry of Science and Education of the Russian Federation (Passport No. 2019-0903).

References:

  1. Glagolewa-Arkadiewa A. Short electromagnetic waves of wave-length up to 82 microns. Nature 1924; 113(2844): 640-640. DOI: 10.1038/113640a0.
  2. Krukov PG. Femtosecond pulses: introduction in a new area of laser physics [In Russian]. Moscow: "Fizmatlit" Publisher; 2008. ISBN: 978-5-9221-0941-3.
  3. Fülöp JA, Pálfalvi L, Klingebiel S, Almási G, Krausz F, Karsch S, Hebling J. Generation of sub-mJ terahertz pulses by optical rectification. Opt Lett 2012; 37(4): 557-559. DOI: 10.1364/OL.37.000557.
  4. Chizhov PA, Ushakov AA, Bukin VV, Garnov SV. Terahertz radiation from extended two-colour air filaments. Laser Phys Lett 2019; 16(7): 075301. DOI: 10.1088/1612-202X/ab2054.
  5. Koulouklidis A, Gollner C, Shumakova V, Fedorov VY, Pugžlys A, Baltuška A, Tzortzakis S. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nat Commun 2020; 11(1): 292. DOI: 10.1038/s41467-019-14206-x.
  6. Ponomareva EA, Ismagilov AO, Putilin SE, Tsypkin AN, Kozlov SA, Zhang X-C. Varying pre-plasma properties to boost terahertz wave generation in liquids. Commun Phys 2021; 4(1): 4. DOI: 10.1038/s42005-020-00511-1.
  7. Balakin AV, Gildenburg VB, Gordienko VM, Kuzechkin NA, Semenov TA, Solyankin PM, Pavlichenko IA, Zhu Y, Shkurinov AP. Directional terahertz beam generation under interaction 13 of an intense femtosecond laser pulse with a cluster jet. J Opt Soc Am B 2021; 38(11): 3515-3522. DOI: 10.1364/JOSAB.438757.
  8. Shalaby M, Hauri CP. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness. Nat Commun 2015; 6(1): 5976. DOI: 10.1038/ncomms6976.
  9. Liao G, Li Y, Liu H, Zhang J. Multimillijoule coherent terahertz bursts from picosecond laser-irradiated metal foils. Proc Natl Acad Sci Nat Acad Sci 2019; 116(10): 3994-3999. DOI: 10.1073/pnas.1815256116.
  10. Tcypkin AN, Melnik MV, Zhukova MO, Vorontsova IO, Putilin SE, Kozlov SA, Zhang X-C. High Kerr nonlinearity of water in THz spectral range. Opt Express 2019; 27(8): 10419-10425. DOI: 10.1364/OE.27.010419.
  11. Novelli F, Ma CY, Adhlakha N, Adams EM, Ockelmann T, Das Mahanta D, Di Pietro P, Perucchi A, Havenith M. Nonlinear terahertz transmission by liquid water at 1 Thz. Appl Sci 2020; 10(15): 5290. DOI: 10.3390/app10155290.
  12. Novelli F, Ruiz Pestana L, Bennett KC, Sebastiani F, Adams EM, Stavrias N, Ockelmann T, Colchero A, Hoberg C, Schwaab G, Head-Gordon T, Havenith M. Strong anisotropy in liquid water upon librational excitation using terahertz laser fields. The Journal of Physical Chemistry B 2020; 124(24): 4989-5001. DOI: 10.1021/acs.jpcb.0c02448.
  13. Sazonov SV, Ustinov NV. Self-induced transparency of few-cycle terahertz pulses. JETP Lett 2020; 112: 24-30. DOI: 10.1134/S0021364020130111.
  14. Glyavin MY, Kuftin AN, Morozkin MV, Proyavin MD, Fokin AP, Chirkov AV, Manuilov VN, Sedov AS, Soluyanova EA, Sobolev DI, Tai EM, Tsvetkov AI, Luchinin AG, Kornishin SY, Denisov GG. A 250-watts, 0.5-Thz continuous-wave secondharmonic gyrotron. IEEE Electron Device Lett 2021; 42(11): 1666-1669. DOI: 10.1109/LED.2021.3113022.
  15. Dolgaleva K, Materikina DV, Boyd RW, Kozlov SA. Prediction of an extremely large nonlinear refractive index for crystals at terahertz frequencies. Phys Rev A 2015; 92(2): 023809. DOI: 10.1103/PhysRevA.92.023809.
  16. Zhukova MO, Melnik MV, Vorontsova IO, Tcypkin AN, Kozlov SA. Estimations of low-inertia cubic nonlinearity featured by electro-optical crystals in the THz range. Photonics 2020; 7(4): 98. DOI: 10.3390/photonics7040098.
  17. Tcypkin AN, Zhukova MO, Melnik MV, Vorontsova IO, Kulya MS, Putilin SE, Kozlov SA, Choudhary S, Boyd RW. Giant third-order nonlinear response of liquids at terahertz frequencies. Phys Rev Appl 2021; 15(5): 054009. DOI: 10.1103/PhysRevApplied.15.054009.
  18. Guselnikov MS, Zhukova MO, Kozlov SA. Inertia of the oscillatory mechanisms of giant nonlinearities of optical materials in the terahertz spectral range. J Opt Technol 2022; 89(7): 371-377. DOI: 10.1364/JOT.89.000371.
  19. Buchmann A, Hoberg C, Novelli F. An ultra-fast liquid switch for terahertz radiation. APL Photonics 2022; 7(12): 121302. DOI: 10.1063/5.0130236.
  20. Kozlov SA, Drozdov AA, Choudhary S, Kniazev MA, Boyd RW. Suppression of self-focusing for few-cycle pulses. J Opt Soc Am B 2019; 36(10): G68-G77. DOI: 10.1364/JOSAB.36.000G68.
  21. Kozlov SA, Drozdov AA. Self-phase modulation of single-cycle optical waves [In Russian]. Scientific-Tecnical Bulletin of Information Technologies, Mechanics and Optics 2011; 72: 99-105.
  22. Drozdov AA, Kozlov SA, Sukhorukov AA, Kivshar YS. Self-phase modulation and frequency generation with few-cycle optical pulses in nonlinear dispersive media. Phys Rev A 2012; 86(5): 053822. DOI: 10.1103/PhysRevA.86.053822.
  23. Sazonov SV. Optical rectification and generation of harmonics under condition of propagation of few-cycle pulses in the birefringent medium with asymmetric molecules. J Russ Laser Res 2018; 39(3): 252-262. DOI: 10.1007/s10946-018-9715-3.
  24. Artser IR, Melnik MV, Ismagilov AO, Guselnikov MS, Tcypkin AN, Kozlov SA. Radiation shift from triple to quadruple frequency caused by the interaction of terahertz pulses with a nonlinear Kerr medium. Sci Rep 2022; 12(1): 9019. DOI: 10.1038/s41598-022-13445-1.
  25. Kozlov SA, Samartsev VV. Fundamentals of femtosecond optics. Cambridge: Woodhead Publishing Limited; 2013. ISBN: 978-1-78242-128-3.
  26. Kozlov SA, Sazonov SV. Nonlinear propagation of optical pulses of a few oscillations duration in dielectric media. J Exp Theor Phys 1997; 84(2): 221-228. DOI: 10.1134/1.558109.
  27. Boyd RW, Lukishova SG, Shen YR. Self-focusing: Past and present: Fundamentals and prospects. New York, NY: Springer; 2009. ISBN: 978-1-4419-2181-9.
  28. Woldegeorgis A, Kurihara T, Beleites B, Bossert J, Grosse R, Paulus GG, Ronneberger F, Gopal A. THz induced nonlinear effects in materials at intensities above 26 gw/cm2. J Infrared Millim Terahertz Waves 2018; 39(7): 667-680. DOI: 10.1007/s10762-018-0493-3.
  29. Wilmink GJ, Ibey BL, Tongue T, Schulkin B, Laman N, Peralta XG, Roth CC, Cerna CZ, Rivest BD, Grundt JE, Roach WP. Development of a compact terahertz time-domain spectrometer for the measurement of the optical properties of biological tissues. J Biomed Opt 2011; 16(4): 047006. DOI: 10.1117/1.3570648.
  30. THz database. 2023. Source: <thzdb.org>.
  31. Schall M, Helm H, Keiding SR. Far infrared properties of electrooptic crystals measured by thz time-domain spectroscopy. Int J Infrared Millim Waves 1999; 20(4): 595-604. DOI: 10.1023/A:1022636421426.
  32. Hebling J, Yeh K-L, Hoffmann MC, Bartal B, Nelson KA. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. J Opt Soc Am B 2008; 25(7): B6-B19. DOI: 10.1364/JOSAB.25.0000B6.
  33. Ezerskaya AA, Ivanov DV, Kozlov SA, Kivshar YS. Spectral approach in the analysis of pulsed terahertz radiation. J Infrared Millim Terahertz Waves 2012; 33: 926-942. DOI: 10.1007/s10762-012-9907-9.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20