(48-1) 08 * << * >> * Russian * English * Content * All Issues

Overview of modern technologies for measuring, predicting and correcting turbulent distortions in optical waves
V.P. Lukin 1, I.P. Lukin 1

V.E. Zuev Institute of Atmospheric Optics SB RAS,
634055, Tomsk, Russia, sq. Academician Zuev 1

 PDF, 1077 kB

DOI: 10.18287/2412-6179-CO-1355

Pages: 68-80.

Full text of article: Russian language.

Abstract:
This work is an analytical review of the components of modern technology for creating adaptive optics systems for correcting the distortion of optical waves propagating in a turbulent atmosphere. The work consists of the following parts: description of a technique for measuring fluctuations of optical waves in an atmospheric path, theoretical calculations of fluctuations by analytical analysis and mathematical modeling methods, technology for predicting turbulent air movement by the numerical solution of the Navier–Stokes equations and, finally, constructing adaptive optics systems that compensate for the turbulent distortions in optoelectronic image construction systems. Attention is focused on the peculiarities of fluctuations of specially created Laguerre–Gaussian and Bessel–Gaussian beams. Features of the propagation of vortex Laguerre–Gaussian and vortex Bessel–Gaussian beams for the transfer of orbital angular momentum through a turbulent medium are shown. Effects of the relative attenuation of phase and intensity fluctuations of the vortex-free Bessel–Gaussian beams in comparison with similar characteristics of the Gaussian beams are found. The integral scale of the coherence degree of the vortex Bessel–Gaussian beams and vortex conic waves is revealed to be highly sensitive to the influence of atmospheric turbulence, in contrast to the coherence radius of these beams and waves. Arguments are given in favor of the feasibility of constructing adaptive optical systems for a wide-aperture solar telescope operating under a strong atmospheric turbulence.

Keywords:
optical waves, atmospheric turbulence measurements, fluctuations, Laguerre-Gaussian beams, Bessel-Gaussian beams, adaptive correction.

Citation:
Lukin VP, Lukin IP. Overview of modern technologies for measuring, predicting and correcting turbulent distortions in optical waves. Computer Optics 2024; 48(1): 68-80. DOI: 10.18287/2412-6179-CO-1355.

Acknowledgements:
This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Sciences).

References:

  1. Gurvich AS, Kon AI, Mironov VL, Khmelevtsov SS. Laser radiation in the turbulent atmosphere [In Russian]. Moscow: "Nauka" Publisher; 1976.
  2. Bol’basova LA, Lukin VP. Atmospheric research for adaptive optics problems [In Russian]. Optika Atmosfery i Okeana 2021; 34(04): 254-271. DOI: 10.15372/AOO2021040.
  3. Tokovinin A. From differential image motion to seeing. Publ Astron Soc Pac 2002; 114: 1156-1166. DOI: 10.1086/342683.
  4. Sarazin M, Roddier F. The ESO differential image motion monitor. Astron Astrophys 1990; 227(1): 294-300.
  5. Antoshkin LV, Botygina NN, Emaleev ON, Lavrinova LN, Lukin VP. Differential optical meter of the parameters of atmospheric turbulence. Atmos Oceanic Opt 1998; 11(11): 1046-1050.
  6. LeMaster DA, Hardie RC, Gladysz S, Howard MD, Rucci MA, Trippel ME, Power JD, Karch BK. Differential tilt variance effects of turbulence in imagery: comparing simulation with theory. Proc SPIE 2016; 9846: 984606. DOI: 10.1117/12.2223470.
  7. Lukin VP. Adaptive optics in the formation of optical beams and images. Adv Phys Sci 2014; 57(6): 556-592. DOI: 10.3367/UFNe.0184.201406b.0599.
  8. Botugina NN, Emaleev ON, Konyaev PA, Lavrinov VV, Lukin VP. Differential turbulence and wind velocity meters. Proc SPIE 2007; 6733: 67330N. DOI: 10.1117/12.753106.
  9. Bolbasova LA, Gritsuta AN, Kopylov EA, Lavrinov VV, Lukin VP, Selin AA, Soin EL. Atmospheric turbulence meter based on a Shack–Hartmann wavefront sensor. J Opt Tech 2019; 86(7): 426-430. DOI: 10.1364/JOT.86.000426.
  10. Lukin VP, Charnotsky MI. On the use of the Hartmann method for determining the characteristics of the radiation wavefront. Optika i Spektroskopiya 1989; 66(5): 1131-1133.
  11. Gladysz S, Segel M, Eisele C, Barros R, Sucher E. Estimation of turbulence strength, anisotropy, outer scale and spectral slope from an LED array. Proc SPIE 2015; 9614: 961402. DOI: 10.1117/12.2191287.
  12. Gladysz S. Absolute and differential G-tilt in turbulence: theory and applications. Proc SPIE 2016; 10002: 100020F. DOI: 10.1117/12.2241016.
  13. Gladysz S, Filimonov G, Kolosov V. Validation of tilt anisoplanatism models through simulation. OSA Technical Digest (Imaging and Applied Optics) 2018; PW3H.2. DOI: 10.1364/PCAOP.2018.PW3H.2.
  14. Andreeva MS, Iroshnikov NG, Koryabin AB, Larichev AV, Shmalgauzen VI. Usage of wavefront sensor for estimation of atmospheric turbulence parameters. Optoelectron Instrum Data Process 2012; 48(2): 197-204. DOI: 10.3103/S8756699012020136.
  15. Borzilov AG, Gritsuta AN, Konyaev PA, Lukin VP, Nosov VV, Soin EL, Torgaev AV. Image jitter meter for low intensity radiation. Proc SPIE 2022; 12341: 123410F. DOI: 10.1117/12.2644417.
  16. Konyaev PA, Lukin VP, Nosov VV, Nosov EV, Soin EL, Torgaev AV. Comparative measurements of atmospheric turbulence parameters by optical methods. Atmos Oceanic Opt 2022; 35(3): 310-318. DOI: 10.1134/S102485602203006X.
  17. Noll RJ. Zernike polynomials and atmospheric turbulence. J Opt Soc Am 1976; 66(3): 207-211. DOI: 10.1364/JOSA.66.000207.
  18. Monin AS, Yaglom AM. Statistical hydromechanics [In Russian]. Vol 1. Saint-Petersburg: "Hydrometeoizdat" Publisher; 1992. ISBN: 5-286-00857-7.
  19. Azbukin AA, Bogushevich AYa, Ilyichevsky VS, Korolkov VA, Tikhomirov AA, Shmelev VD. Automated ultrasonic meteorological complex AMK-03. Meteorology and Hydrology 2006; 31(11): 89-97.
  20. Nosov VV, Lukin VP, Nosov EV, Torgaev AV. Simulation of coherent structures (topological solitons) inside closed rooms by solving numerically hydrodynamic equations. Opt Atmos Okeana 2015; 28(2): 120-133.
  21. Popinet S. The Gerris flow solver – a free, open source, general-purpose fluid mechanics code. 2013. Source: áhttps://the-gerris-flow-solver.soft112.comñ.
  22. Popinet S. Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries. Journal of Computational Physics 2003; 190(2): 572-600. DOI: 10.1016/S0021-9991(03)00298-5.
  23. Popinet S, Smith M, Stevens C. Experimental and numerical study of the turbulence characteristics of air flow around a research vessel. Journal of Atmospheric and Oceanic Technology 2004; 21(10): 1574-1589. DOI: 10.1175/1520-0426(2004)021<1575:EANSOT>2.0.CO;2.
  24. Chorin AJ. The numerical solution of the Navier-Stokes equations for an incompressible fluid. Bulletin of the American Mathematical Society 1967; 73(6): 928-931. DOI: 10.1090/s0002-9904-1967-11853-6.
  25. Chorin AJ. Numerical solution of the Navier-Stokes equations. Mathematics of Computation 1968; 22(104): 745-762. DOI: 10.2307/2004575.
  26. Lukin VP, Kopylov EA, Lavrinov VV, Selin AA. Methods of image correction formed on horizontal long paths. Proc SPIE 2018; 10677: 1067765. DOI: 10.1117/12.2309327.
  27. Lukin VP, Nosov VV, Torgaev AV. Features of optical image jitter in a random medium with a finite outer scale. Appl Opt 2014; 53(10): B196-B204. DOI: 10.1364/AO.53.00B196.
  28. Lukin VP, Nosov VV, Kovadlo PG, Nosov EV, Torgaev AV. Causes of non-Kolmogorov turbulence in the atmosphere. Appl Opt 2016; 55(12): B163-B168. DOI: 10.1364/AO.55.00B163.
  29. Bolbasova LA, Lukin VP, Nosov VV. Comparison of Kolmogorov’s and coherent turbulence. Appl Opt 2014; 53(10): B231-B236. DOI: 10.1364/AO.53.00B231.
  30. Nosov VV, Lukin VP, Kovadlo PG, Nosov EV, Torgaev AV. Proof of Hopf's conjecture on the structure of turbulence (Tatarsky's memory). Opt Atmos Okeana 2023; 36(1): 12-18. DOI: 10.15372/AOO20230102.
  31. Willner AE, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery MPJ, Tur M, Ramachandran S, Molisch AF, Ashrafi N, Ashrafi S. Optical communications using orbital angular momentum beams. Adv Opt Photon 2015; 7(1): 66-106. DOI: 10.1364/AOP.7.000066.
  32. Ding P, Ren H. Propagation law of partially coherent vortex beam. Opt Eng 2012; 51(1): 018002. DOI: 10.1117/1.OE.51.1.018002.
  33. Kotlyar VV, Kovalev AA, Porfirev AP. Hermite-gaussian laser beams with orbital angular momentum. Computer Optics 2014; 38(4): 651-657. DOI: 10.18287/0134-2452-2014-38-4-651-657.
  34. Lukin, VP, Konyaev PA, Sennikov VA. Beam spreading of vortex beams propagating in turbulent atmosphere. Appl Opt 2012; 51(1): C84-C87. DOI: 10.1364/AO.51.000C84.
  35. Soifer VA, Korotkova О, Khonina SN, Shchepakina ЕА. Vortex beams in turbulent media: review. Computer Optics 2016; 40(5): 605-624. DOI: 10.18287/2412-6179-2016-40-5-605-624.
  36. Aksenov VV, Kolosov VV, Filimonov GA, Pogutsa CE. Orbital angular momentum of a laser beam in a turbulent medium: preservation of the average value and variance of fluctuations. J Opt 2016; 18: 054013. DOI: 10.1088/2040-8978/18/5/054013.
  37. Konyaev PA, Lukin VP. Computational algorithms for simulations in atmospheric optics. Appl Opt 2016; 55(12): 107-112. DOI: 10.1364/AO.55.00B107.
  38. Karpeev SV, Paranin VD, Kirilenko MS. Comparison of the stability of Laguerrе-Gauss vortex beams to random fluctuations of the optical environment. Computer Optics 2017; 41(2): 208-217. DOI: 10.18287/2412-6179-2017-41-2-208-217.
  39. Charnotskii M. Turbulence effects on fluctuations of the aperture-averaged orbital angular momentum. J Opt Soc Am 2018; 35(5): 702-711. DOI: 10.1364/JOSAA.35.000702.
  40. Lukin VP, Konyaev PA, Sennikov VA. Phase correction of coherent scalar vortex light beams under turbulence conditions. Proc SPIE 2020; 11532: 115320P. DOI: 10.1364/AO.41.005616.
  41. Aksenov VP, Dudurov VV, Kolosov VV, Filimonov GA. Fluctuations of the orbital angular momentum of a laser beam registered by a finite-size receiver aperture after propagation through a turbulent atmosphere. OSA Continuum 2021; 4(7): 1945-1955. DOI: 10.1364/OSAC.430142.
  42. Konyaev PA, Lukin VP. Computation algorithms for simulation in atmospheric optics. Appl Opt 2016; 55(12): B107-B112. DOI: 10.1364/AO.55.00B107.
  43. Asanov SV, Geintz YE, Zemlyanov AA, Ignatyev AB, Matvienko GG, Morozov VV, Tarasenkova AV. Forecast of intense near- and mid-IR laser radiation propagation along slant atmospheric paths. Atmos Oceanic Opt 2016; 29(4): 315-323. DOI: 10.1134/S1024856016040035.
  44. Konyaev PA, Lukin VP. Computer simulations of multi-channel laser beams system focusing in turbulent atmosphere. MDPI Photonics 2023; 10(4): 431. DOI: 10.3390/photonics10040431.
  45. Volostnikov VG. Modern optics of Gaussian beams. Adv Phys Sci 2012; 55(4): 412-420. DOI: 10.3367/UFNr.0182.201204f.0442.
  46. Kuga T, Torii Y, Shiokawa N, Hirano T, Shimizu Y, Sasada H. Novel optical trap of atoms with a doughnut beam. Phys Rev Lett 1997; 78(25): 4713-4716. DOI: 10.1103/PhysRevLett.78.4713.
  47. Rao L, Pu J. Generation of partially coherent vortex bottle beams. Chin Opt Lett 2007; 5(7): 379-382.
  48. Carbajal-Domingues A, Bernal J, Martin-Ruiz A, Niconoff GM. Generation of J0 Bessel beams with controlled spatial coherence features. Opt Express 2010; 18(8): 8400-8405. DOI: 10.1364/OE.18.008400.
  49. He X, Lu B. Propagation of partially coherent flat-topped vortex beams through non-Kolmogorov atmospheric turbulence. J Opt Soc Am A 2011; 28(9): 1941-1948. DOI: 10.1364/JOSAA.28.001941.
  50. Abramochkin EG, Volostnikov VG. Spiral light beams. Adv Phys Sci 2004; 47(12): 1177-1203. DOI: 10.1070/PU2004v047n12ABEH001802.
  51. Kiselev AP. Localized light waves: paraxial and exact solutions of the wave equation (a review). Opt Spectrosc 2007; 102(4): 603-622. DOI: 10.1134/S0030400X07040200.
  52. Andrews DL. Structured light and its applications: An introduction to phase-structured beams and nanoscale optical forces. New York: Academic Press; 2008. ISBN: 978-0-12-374027-4.
  53. Kotlyar VV, Kovalev AA. Accelerating and vortex laser beams [In Russian]. Moscow: “Fizmatlit” Publisher; 2018. ISBN: 978-5-9221-1818-7.
  54. Lopez-Moriscal C, Bandres MA, Gutierrez-Vega JC. Observation of the experimental propagation properties of Helmholtz-Gauss beams. Opt Eng 2006; 45(6): 068001. DOI: 10.1117/1.2210485.
  55. Morse P, Feshbach H. Methods of theoretical physics. New York: McGraw-Hill; 1953.
  56. Miller W. Symmetry and separation of variables. London: Addison-Wesley Publishing Company; 1977. ISBN: 0-201-13503-5.
  57. Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory. J Opt Soc Am A 1987; 4(4): 651-654. DOI: 10.1364/JOSAA.4.000651.
  58. Gori F, Guattari G, Padovani C. Bessel-Gauss beams. Opt Commun 1987; 64(6): 491-495. DOI: 10.1016/0030-4018(87)90276-8.
  59. Pyatnitskii LN. Optical discharge in the field of a Bessel laser beam. Adv Phys Sci 2010; 53(2): 159-177. DOI: 10.3367/UFNe.0180.201002c.0165.
  60. Pyatnitskii LN. Wave Bessel beams [In Russian]. Moscow: “Fizmatlit” Publisher; 2012. ISBN: 978-5-9221-1318-2.
  61. Chen B, Chen Z, Pu J. Propagation of partially coherent Bessel-Gaussian beams in turbulent atmosphere. Opt Laser Technol 2008; 40(6): 820-827. DOI: 10.1016/j.optlastec.2007.11.011.
  62. Birch P, Ituen I, Young R, Chatwin Ch. Long-distance Bessel beam propagation through Kolmogorov turbulence. J Opt Soc Am A 2015; 32(11): 2066-2073. DOI: 10.1364/JOSAA.32.002066.
  63. Palacios DM, Maleev ID, Marathay AS, Swartzlander GA. Spatial correlation singularity of a vortex field. Phys Rev Lett 2004; 92(14): 143905. DOI: 10.1103/PhysRevLett.92.143905.
  64. Maleev ID, Palacios DM, Marathay AS, Swartzlander GA. Spatial correlation vortices in partially coherent light: theory. J Opt Soc Am B 2004; 21(11): 1895-1900. DOI: 10.1364/JOSAB.21.001895.
  65. Ding Ch, Pan L, Lu B. Phase singularities and spectral changes of spectrally partially coherent higher-order Bessel-Gauss pulsed beams. J Opt Soc Am A 2009; 26(12): 2654-2661. DOI: 10.1364/JOSAA.26.002654.
  66. McLeod JH. The axicon: A new type of optical element. J Opt Soc Am 1954; 44(8): 592-597. DOI: 10.1364/JOSA.44.000592.
  67. McLeod JH. Axicons and their uses. J Opt Soc Am 1960; 50(2): 166-169. DOI: 10.1364/JOSA.50.000166.
  68. Friberg AT. Stationary-phase analysis of generalized axicons. J Opt Soc Am A 1996; 13(4): 743-750. DOI: 10.1364/JOSAA.13.000743.
  69. Popov SYu, Friberg AT. Design of diffractive axicons for partially coherent light. Opt Lett 1998; 23(21): 1639-1641. DOI: 10.1364/OL.23.001639.
  70. Golub I. Fresnel axicon. Opt Lett 2006; 31(12): 1890-1892. DOI: 10.1364/OL.31.001890.
  71. Burvall A, Kolacz K, Goncharov AV, Jaroszewicz Z, Dainty Ch. Lens axicons in oblique illumination. Appl Opt 2007; 46(3): 312-318. DOI: 10.1364/AO.46.000312.
  72. Akturk S, Zhou B, Pasquiou B, Franco M, Mysyrowicz A. Intensity distribution around the focal regions of real axicons. Opt Commun 2008; 281(17): 4240-4244. DOI: 10.1016/j.optcom.2008.05.027.
  73. Fedotowsky A, Lehovec K. Optimal filter design for annular imaging. Appl Opt 1974; 13(12): 2919-2923. DOI: 10.1364/AO.13.002919.
  74. Khonina SN, Kotlyar VV, Shinkaryev MV, Soifer VA, Uspleniev GV. The phase rotor filter. J Mod Opt 1992; 39(5): 1147-1154. DOI: 10.1080/09500349214551151.
  75. Khonina SN, Kotlyar VV, Skidanov RV, Soifer VA, Jefimovs K, Simonen J, Turunen J. Rotation of microparticles with Bessel beams generated by diffractive elements. J Mod Opt 2004; 51(4): 2167-2184. DOI: 10.1080/09500340408232521.
  76. Arlt J, Dholakia K. Generation of high-order Bessel beams by use of an axicon. Opt Commun 2000; 177(1-6): 297-301. DOI: 10.1016/S0030-4018(00)00572-1.
  77. Kotlyar VV, Kovalev AA, Khonina SN, Skidanov RV, Soifer VA, Elfstrom H, Tossavainen N, Turunen J. Diffraction of conic and Gaussian beams by a spiral phase plate. Appl Opt 2006; 45(12): 2656-2665. DOI: 10.1364/AO.45.002656.
  78. Yu Y, Dou W. Generation of pseudo-Bessel beams at THz frequencies by use of binary axicons. Opt Express 2009; 17(2): 888-893. DOI: 10.1364/OE.17.000888.
  79. Degtyarev SA, Porfirev AP, Khonina SN. Photonic nanohelix generated by a binary spiral axicon. Appl Opt 2016; 55(12): B44-B48. DOI: 10.1364/AO.55.000B44.
  80. Khonina SN. Simple way for effective formation various nondiffractive laser beams. Computer Optics 2009; 33(1): 70-78.
  81. Lukin IP. Bessel-Gaussian beam phase fluctuations in randomly inhomogeneous media. Atmos Oceanic Opt 2010; 23(3): 236-240. DOI: 10.1134/S1024856010030139.
  82. Lukin IP. Phase fluctuations of optical waves in the case of cone focusing in turbulent atmosphere. Atmos Oceanic Opt 2012; 25(3): 199-203. DOI: 10.1134/S1024856012030074.
  83. Lukin IP. Intensity fluctuations of the Bessel-Gaussian beams propagating in turbulent atmosphere. Proc SPIE 2019; 11208: 112082N. DOI: 10.1117/12.2540931.
  84. Rytov SM, Kravtsov YA, Tatarskii VI. Wave propagation through random media. Volume 4: Principles of statistical radiophysics. Heidelberg: Springer-Verlag Berlin; 1989. ISBN: 978-3-642-72684-2.
  85. Lukin IP. Integral momenta of vortex Bessel-Gaussian beams in turbulent atmosphere. Appl Opt 2016; 55(12): B61-B66. DOI: 10.1364/AO.55.000B61.
  86. Chen Sh, Li Sh, Zhao Y, Liu J, Zhu L, Wang A, Du J, Shen L, Wang J. Demonstration of 20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation. Opt Lett 2016; 41(20): 4680-4683. DOI: 10.1364/OL.41.004680.
  87. Lukin IP. Coherence of vortex Bessel-like beams in a turbulent atmosphere. Appl Opt 2020; 59(13): 3833-3841. DOI: 10.1364/AO.387549.
  88. Malakhov AN. Cumulative analysis of random non-Gaussian processes and their transformations [In Russian]. Moscow: “Sovetskoe Radio” Publisher; 1978.
  89. Antoshkin LV, Botygina NN, Emaleev ON, Kovadlo PG, Konyaev PA, Kopylov EA, Lukin VP, Skomorovsky VI, Trifonov VD, Chuprakov SA. Telescope with adaptive optical system [In Russian]. Utility model Pat RF of Invent N 111695 of June 29, 2011, Russian Bull of Inventions N76, 2012.
  90. Lukin VP, Konyaev PA, Borzilov AG, Soin EL. Adaptive imaging and stabilization system for a large-aperture solar telescope. Atmos Oceanic Opt 2022; 35(3): 240-249. DOI: 10.1134/S1024856022030101.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20