(48-2) 03 * << * >> * Russian * English * Content * All Issues

Beams with the transverse-only intensity at the focus
S.S. Stafeev 1,2, N.N. Kazakov 2, V.V. Kotlyar 1,2

Image Processing Systems Institute, NRC "Kurchatov Institute",
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University,
443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 914 kB

DOI: 10.18287/2412-6179-CO-1368

Pages: 186-191.

Full text of article: Russian language.

Abstract:
In this work, sharp focusing of vector beams with azimuthal polarization and beams with V-line of polarization uncertainty is simulated numerically using the Richards-Wolf formulas. It is demonstrated that at the sharp focus of these beams the longitudinal component of the electric field vector is zero. Previously, a similar effect was demonstrated only for azimuthally polarized beams. Also, the longitudinal component of the spin angular momentum of these beams is calculated and the possibility of creating sector azimuthally polarized beams using vector waveplates is shown.

Keywords:
sharp focusing, vector beam, azimuthal polarization, spin angular momentum, magnetization.

Citation:
Stafeev SS, Kazakov NN, Kotlyar VV. Beams with the transverse-only intensity at the focus. Computer Optics 2024; 48(2): 186-191. DOI: 10.18287/2412-6179-CO-1368.

Acknowledgements:
This work was funded by the Russian Science Foundation under project No. 23-12-00236 ("Theoretical background" Section) and the government project of the NRC "Kurchatov Institute" ("Experiment" Section).

References:

  1. Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photonics 2009; 1: 1-57. DOI: 10.1364/AOP.1.000001.
  2. Hao X, Kuang C, Wang T, Liu X. Phase encoding for sharper focus of the azimuthally polarized beam. Opt Lett 2010; 35: 3928-3930. DOI: 10.1364/OL.35.003928.
  3. Yuan GH, Wei SB, Yuan XC. Nondiffracting transversally polarized beam. Opt Lett 2011; 36: 3479. DOI: 10.1364/OL.36.003479.
  4. Kroychuk MK, Shorokhov AS, Yagudin DF, Shilkin DA, Smirnova DA, Volkovskaya I, Shcherbakov MR, Shvets G, Fedyanin AA. Enhanced nonlinear light generation in oligomers of silicon nanoparticles under vector beam illumination. Nano Lett 2020; 20: 3471-3477. DOI: 10.1021/acs.nanolett.0c00393.
  5. Kroychuk MK, Yagudin DF, Shorokhov AS, Smirnova DA, Volkovskaya II, Shcherbakov MR, Shvets G, Kivshar YS, Fedyanin AA. Tailored nonlinear anisotropy in mie-resonant dielectric oligomers. Adv Opt Mater 2019; 7: 1900447. DOI: 10.1002/adom.201900447.
  6. Sharif V, Pakarzadeh H. High – performance surface plasmon resonance fiber sensor based on cylindrical vector modes. Sci Rep 2023; 13: 4563. DOI: 10.1038/s41598-023-31524-9.
  7. Khorsand AR, Savoini M, Kirilyuk A, Kimel AV, Tsukamoto A, Itoh A, Rasing T. Role of magnetic circular dichroism in all-optical magnetic recording. Phys Rev Lett 2012; 108: 127205. DOI: 10.1103/PhysRevLett.108.127205.
  8. Ignatyeva DO, Davies CS, Sylgacheva DA, Tsukamoto A, Yoshikawa H, Kapralov PO, Kirilyuk A, Belotelov VI, Kimel AV. Plasmonic layer-selective all-optical switching of magnetization with nanometer resolution. Nat Commun 2019; 10: 4786. DOI: 10.1038/s41467-019-12699-0.
  9. Nie Z, Ding W, Li D, Zhang X, Wang Y, Song Y. Spherical and sub-wavelength longitudinal magnetization generated by 4π tightly focusing radially polarized vortex beams. Opt Express 2015; 23: 690. DOI: 10.1364/OE.23.000690.
  10. Udhayakumar M, Prabakaran K, Rajesh KB, Jaroszewicz Z, Belafhal A. Generating sub wavelength pure longitudinal magnetization probe and chain using complex phase plate. Opt Commun 2018; 407: 275-279. DOI: 10.1016/j.optcom.2017.09.007.
  11. Wang S, Li X, Zhou J, Gu M. Ultralong pure longitudinal magnetization needle induced by annular vortex binary optics. Opt Lett 2014; 39: 5022-5025. DOI: 10.1364/OL.39.005022.
  12. Gong L, Wang L, Zhu Z, Wang X, Zhao H, Gu B. Generation and manipulation of super-resolution spherical magnetization chains. Appl Opt 2016; 55: 5783. DOI:10.1364/AO.55.005783.
  13. Nie Z, Ding W, Shi G, Li D, Zhang X, Wang Y, Song Y. Achievement and steering of light-induced sub-wavelength longitudinal magnetization chain. Opt Express 2015; 23: 21296. DOI: 10.1364/OE.23.021296.
  14. Yan W, Nie Z, Liu X, Lan G, Zhang X, Wang Y, Song Y. Dynamic control of transverse magnetization spot arrays. Opt Express 2018; 26: 16824. DOI: 10.1364/oe.26.016824.
  15. Zand M, Miri M, Sadrara M. Pure magnetic hotspots via hollow silicon nanoparticles illuminated by cylindrical vector beams. J Appl Phys 2023; 133: 093101. DOI: 10.1063/5.0131649.
  16. Miao Y, Wang L, Zhang Q, Sun X, Gao X, Wan J, Zhuang S. Tight-focusing properties of propagable fractional-order vector vortex beams. J Opt Soc Am B 2023; 40: 1113. DOI: 10.1364/JOSAB.485509.
  17. Stafeev SS, Nalimov AG, Zaitsev VD, Kotlyar VV. Tight focusing cylindrical vector beams with fractional order. J Opt Soc Am B 2021; 38(4): 1090-1096. DOI: 10.1364/JOSAB.413581.
  18. Ma C, Song T, Chen R, Li H, Li X. Shaping focal field by grafted polarization. Opt Express 2023; 31: 8120. DOI: 10.1364/OE.482303.
  19. Wang J, Dong F, Zhang K, Zhou Y, Song Z, Hu H, Xu L, Jiang H, Liang G, Zhang Z, Wen Z, Liu Y, Shang Z, Dai L, Chu W, Chen G. Generating a superoscillation three-dimensional hollow spot by polarization manipulation. Phys Rev Appl 2023; 19: 044069. DOI: 10.1103/PhysRevApplied.19.044069.
  20. Kotlyar VV, Stafeev SS, Nalimov AG, O’Faolain L. Subwavelength grating-based spiral metalens for tight focusing of laser light. Appl Phys Lett 2019; 114(14): 141107. DOI: 10.1063/1.5092760.
  21. Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc Math Phys Eng Sci 1959; 253: 358-379. DOI: 10.1098/rspa.1959.0200.
  22. Pereira SF, van de Nes AS. Superresolution by means of polarisation, phase and amplitude pupil masks. Opt Commun 2004; 234: 119-124. DOI: 10.1016/j.optcom.2004.02.020.
  23. Davidson N, Bokor N. High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens. Opt Lett 2004; 29: 1318-1320. DOI: 10.1364/ol.29.001318.
  24. Freund I. Polarization singularity indices in Gaussian laser beams. Opt Commun 2002; 201: 251-270. DOI: 10.1016/S0030-4018(01)01725-4.
  25. Khonina SN, Volotovsky SG. Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures. J Opt Soc Am A 2010; 27(10): 2188-2197. DOI: 10.1364/JOSAA.27.002188.
  26. Khonina SN. Simple phase optical elements for narrowing of a focal spot in high-numerical-aperture conditions. Opt Eng 2013; 52(9): 091711. DOI: 10.1117/1.oe.52.9.091711.
  27. Stafeev SS, Kotlyar VV, Nalimov AG, Kozlova ES. The non-vortex inverse propagation of energy in a tightly focused high-order cylindrical vector beam. IEEE Photonics J 2019; 11: 4500810. DOI: 10.1109/JPHOT.2019.2921669.
  28. Kotlyar V, Stafeev S, Zaitsev V, Kozlova E. Spin-orbital conversion with the tight focus of an axial superposition of a high-order cylindrical vector beam and a beam with linear polarization. Micromachines 2022; 13(7): 1112. DOI: 10.3390/mi13071112.
  29. Maluenda D, Aviñoá M, Ahmadi K, Martínez-Herrero R, Carnicer A. Experimental estimation of the longitudinal component of a highly focused electromagnetic field. Sci Rep 2021; 11: 17992. DOI: 10.1038/s41598-021-97164-z.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20