(48-2) 10 * << * >> * Russian * English * Content * All Issues

Formation of contrasting polychromatic object images based on multi-window acousto-optical filtering
V.V. Shipko 1,2, V.E. Pozhar 2, A.S. Machikhin 2, M.O. Sharikova 2, O.A. Kananykhin 2, Y.V. Pisarevsky 3, I.B. Sergeev 3

Military Educational and Scientific Center of the Air Force “Air Force Academy named after prof. N.E. Zhukovsky and Yu.A. Gagarin",
394064, Voronezh, Russia, st. Old Bolsheviks 54a;
Scientific and Technological Center of Unique Instrumentation RAS,
117342, Moscow, Russia, Butlerova st. 15;
NRC Kurchatov Institute,
119333, Moscow, Russia, Leninsky av. 59

 PDF, 3118 kB

DOI: 10.18287/2412-6179-CO-1320

Pages: 231-241.

Full text of article: Russian language.

Abstract:
The article presents a technique for acousto-optical multispectral imaging based on choosing the most informative spectral channels and the formation of a multi-window transmission function of an acousto-optical tunable filter. The developed algorithm allows one to select combinations of spectral channels that provide high contrast for a given set of objects and backgrounds with known spectra. The method is tested on the contrast visualization of 20 different object-background pairs with a similar color tone. The results of the experiment demonstrate the effectiveness of the proposed method and algorithm.

Keywords:
multi-spectral imaging, contrast enhancement, visualization, acousto-optical tunable filter, multi-window filtration.

Citation:
Shipko VV, Pozhar VE, Machikhin AS, Sharikova MO, Kananykhin OA, Pisarevsky YV, Sergeev IB. Formation of contrasting polychromatic object images based on multi-window acousto-optical filtering. Computer Optics 2024; 48(2): 231-241. DOI: 10.18287/2412-6179-CO-1320.

Acknowledgements:
This work was financially supported by the Russian Science Foundation under project 19-19-00606-П. The crystals used in the manufacture of an acousto-optical video spectrometer were prepared within the framework of the State Assignment of the NRC Kurchatov Institute.

References:

  1. Vinogradov AN, Egorov VV, Kalinin AP, Rodionov AI, Rodionov ID. Line of aviation ultraviolet, visible and near-infrared hyperspectrometers [In Russian]. Opt J 2016; 88(4): 54-62.
  2. Epikhin VM, Kiyachenko YF, Mazur MM, Mazur LI, Paltcev LL, Suddenok YA, Shorin VN. Optical imaging spectrometers of the visible and near-infrared ranges [In Russian]. Physical bases of instrumentation 2013; 4(9): 116-125.
  3. Borzov SM, Potaturkin OI. Selection of the informative feature system for crops classification using hyperspectral data. Optoelectronics, Instrumentation and Data Processing 2020; 56(4): 431-439. DOI: 10.3103/S8756699020040032.
  4. Maltsev GN, Kozinov IA. Optimization of the number of spectral channels in the problems of processing and analysis of hyperspectral remote sensing data of the world ocean [In Russian]. Fundamental and Applied Hydrophysics 2015; 8(4): 92-100.
  5. Schowengerdt RA. Remote sensing. Models and methods of image processing [In Russian]. Moscow: Technosphere; 2010.
  6. Molchanov VY, Kitaev YI, Kolesnikov AI, etc. Theory and practice of modern acousto-optics [In Russian]. Moscow: MISIS; 2015. ISBN 978-5-87623-483-4.
  7. Balakshiy VI, Parygin VN, Chirkov LE. Physical foundations of acousto-optics [In Russian]. Moscow: Radio and communications; 1985.
  8. Kozinov IA, Maltsev GN. Development and processing of hyperspectral images in optical–electronic remote sensing systems. Opt Spectrosc 2016; 121(6): 934-946 DOI: 10.1134/S0030400X16120158.
  9. Pozhar VE, Pustovoit VI. On the optimal algorithm for spectral chemical analysis using acousto-optical spectrometers [In Russian]. Electromagnetic Waves and Electronic Systems 1997; 2(4): 26-30.
  10. Mazur MM, Pustovoit VI, Suddenok YA, Shorin VN. Acousto-optic monochromator with controlled width of the instrumental function [In Russian]. Physical bases of instrumentation 2018; 2(28): 20-37. DOI: 10.25210/jfop-1802-020037.
  11. Pozhar VE, Velikovsky DY. Spectral recognition of objects using multi-window acousto-optical filters. Opt Spectrosc 2020; 128(7): 1041-1047. DOI: 10.21883/OS.2020.07.49578.107-20.
  12. Shipko VV, Samoilin EA, Pozhar VE, Machikhin AS. Formation of contrast images of specified objects by acousto-optic hyperspectrometer by selective spectral registration. Opt Spectrosc 2022; 10: 1343. DOI: 10.21883/OS.2022.10.53633.3873-22.
  13. Gupta N, Suhre D. Notch filtering using a multiple passband AOTF in the SWIR region.  Applied Optics 2016; 55(28): 7855-7860. DOI: 10.1364/AO.55.007855.
  14. Bogomolov DV, Voloshinov VB. Analysis of quality of images obtained by acousto-optic filtering. Proc SPIE 2004; 5828: 105-116. DOI: 10.1117/12.612763.
  15. Mazur MM, Suddenok YA, Shorin VN.  Double acousto-optic monochromator of images with tunable width of the transmission function. Technical physics letters 2015; 40(2): 167-169. DOI: 10.1134/S1063785014020254.
  16. Mazur MM, Mazur LI, Pustovoit VI, Suddenok YA, Shorin VN. High-transmission two-crystal acousto-optic monochromator. Technical Physics 2017; 62(9): 1407-1410. DOI: 10.1134/S1063784217090183.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20