(48-3) 03 * << * >> * Russian * English * Content * All Issues

A metalens for detecting fractional-order optical vortices
A.G. Nalimov 1,2, V.V. Kotlyar 1,2, Y.V. Khanenko 1,2, S.D. Poletaev 1,2

Image Processing Systems Institute, NRC "Kurchatov Institute",
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University,
443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 2083 kB

DOI: 10.18287/2412-6179-CO-1435

Pages: 342-348.

Full text of article: Russian language.

Abstract:
In this work, a metalens for detecting an incident field with a fractional topological charge ranging from – 2 to 0 is proposed. The metalens is based on a spiral zone plate with a topological charge of 1.5. A change in the topological charge of the incident beam is numerically shown to lead to an off-axis shift of the focal spot from the center, with the intensity maximum value also changing. This results in a 6.9-fold change in the on-axis intensity while the topological charge of the incident beam changes from –0.6 to –1.5. The on-axis intensity at the focus is also shown to be affected by the rotation of the fractional vortex beam. This makes it possible to use the proposed metalens for measuring the angle of rotation of the incident beam in the range from 0 to 110°.

Keywords:
topological charge, fractional optical vortex, multifocal metalens.

Citation:
Nalimov AG, Kotlyar VV, Khanenko YV, Poletaev SD. A metalens for detecting fractional-order optical vortices. Computer Optics 2024; 48(3): 342-348. DOI: 10.18287/2412-6179-CO-1435.

Acknowledgements:
The work was partly funded by the Russian Science Foundation under grant #23-12-00236 (Sections “Design of a metalens” and “Numerical simulation”) and the RF Ministry of Science and Higher Education within a state contract of the FRC "Crystallography and Photonics" RAS (Sections “Introduction” and “Conclusion”).

References:

  1. Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 1992; 45(11): 8185-8189. DOI: 10.1103/PhysRevA.45.8185.
  2. Yao AM, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics 2011; 3(2): 161. DOI: 10.1364/AOP.3.000161.
  3. Willner AE, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery MPJ, Tur M, Ramachandran S, Molisch AF, Ashrafi N, Ashrafi S. Optical communications using orbital angular momentum beams. Adv Opt Photonicsm 2015; 7(1): 66-106. DOI: 10.1364/AOP.7.000066.
  4. Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner AE, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013; 340(6140): 1545-1548. DOI: 10.1126/science.1237861.
  5. Ding D-S, Zhou Z-Y, Shi B-S, Zou X-B, Guo G-C. Linear up-conversion of orbital angular momentum. Opt Lett 2012; 37(15): 3270-3272. DOI: 10.1364/OL.37.003270.
  6. Vaziri A, Weihs G, Zeilinger A. Experimental two-photon, three-dimensional entanglement for quantum communication. Phys Rev Lett 2002; 89(24): 240401. DOI: 10.1103/PhysRevLett.89.240401.
  7. Zou XB, Mathis W. Scheme for optical implementation of orbital angular momentum beam splitter of a light beam and its application in quantum information processing. Phys Rev A 2005; 71(4): 042324. DOI: 10.1103/PhysRevA.71.042324.
  8. Tamburini F, Anzolin G, Umbriaco G, Bianchini A, Barbieri C. Overcoming the Rayleigh criterion limit with optical vortices. Phys Rev Lett 2006; 97(16): 163903. DOI: 10.1103/PhysRevLett.97.163903.
  9. MacDonald MP, Paterson L, Volke-Sepulveda K, Arlt J, Sibbett W, Dholakia K. Creation and manipulation of three-dimensional optically trapped structures. Science 2002; 296(5570): 1101-1103. DOI: 10.1126/science.1069571.
  10. Padgett M, Bowman R. Tweezers with a twist. Nat Photonics 2011; 5(6): 343-348. DOI: 10.1038/nphoton.2011.81.
  11. Molina-Terriza G, Torres JP, Torner L. Twisted photons. Nat Phys 2007; 3(5): 305-310. DOI: 10.1038/nphys607.
  12. Molloy JE, Padgett MJ. Lights, action: optical tweezers. Contemp Phys 2002; 43(4): 241-258. DOI: 10.1080/0010751011011605.
  13. Beijersbergen MW, Coerwinkel RPC, Kristensen M, Woerdman JP. Helical-wavefront laser beams produced with a spiral phaseplate. Opt Commun 1994; 112(5-6): 321. DOI: 10.1016/0030-4018(94)90638-6.
  14. Karimi E, Piccirillo B, Nagali E, Marrucci L, Santamato E. Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates. Appl Phys Lett 2009; 94(23): 231124. DOI: 10.1063/1.3154549.
  15. Heckenberg NR, McDuff R, Smith CP, White AG. Generation of optical phase singularities by computer-generated holograms. Opt Lett 1992; 17(3): 221-223. DOI: 10.1364/OL.17.000221.
  16. Liu X, Huang S, Xie W, Pei Z. Topological charge parallel measurement method for optical vortices based on computer-generated holography. J Opt Technol 2022; 89(2): 94-100. DOI: 10.1364/JOT.89.000094.
  17. Li R, Ren Y, Liu T, Wang C, Liu Z, Zhao J, Sun R, Wang Z. Generating large topological charge Laguerre–Gaussian beam based on 4K phase-only spatial light modulator. Chin Opt Lett 2022; 20: 120501. DOI: 10.3788/COL202220.120501.
  18. Lv S, Bai Y, Luo W, Meng F, Wang R. Design of a vortex metalens with high focusing efficiency using propagation phase. Appl Opt 2022; 61(21): 6311-6315. DOI: 10.1364/AO.464090.
  19. Shen Z, Xiang Z, Wang Z, Shen Y, Zhang B. Optical spanner for nanoparticle rotation with focused optical vortex generated through a Pancharatnam–Berry phase metalens. Appl Opt 2021; 60(16): 4820-4826. DOI: 10.1364/AO.425892.
  20. Cao G, Lin H, Jia B, Yuan X, Somekh M, Wei S. Design of a dynamic multi-topological charge graphene orbital angular momentum metalens. Opt Express 2023; 31(2): 2102-2111. DOI: 10.1364/OE.480946.
  21. Zhu J, Wenjing S, Dong Z. Directionally duplexed all-dielectric metalens for multifunctional structured light generation. Opt Lett 2023; 48(15): 4013-4016. DOI: 10.1364/OL.495014.
  22. Hao Q, Wang W, Hu Y, Zhang S, Zhang S, Zhang Y. Independent and intensity-adjustable dual-focused vortex beams via a helicity-multiplexing metalens. Opt Mater Express 2022; 12(10): 3872-3881. DOI: 10.1364/OME.465726.
  23. Nalimov AG, Kotlyar VV. Multifocal metalens for detecting several topological charges at different wavelengths. Computer Optics 2023; 47(2): 201-207. DOI: 10.18287/2412-6179-CO-1170.
  24. Guo Y, Zhang S, Luo X. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 2021; 10: 63. DOI: 10.1038/s41377-021-00497-7.
  25. Jin Z, Janoschka D, Deng J, Ge L, Dreher P, Frank B, Hu G, Ni J, Yang Y, Li J, Yu G, Lei D, Li G, Xiao S, Mei S, Giessen H, zu Heringdorf FM, Qiu C-W. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight 2021; 1: 5. DOI: 10.1186/s43593-021-00005-9.
  26. Kotlyar VV, Stafeev SS, Nalimov AG, O’Faolain L, Kotlyar MV. A dual-functionality metalens to shape a circularly polarized optical vortex or a second-order cylindrical vector beam. Photonics Nanostruct 2021; 43: 100898. DOI: 10.1016/j.photonics.2021.100898.
  27. Nalimov AG, Kotlyar VV. Topological charge of optical vortices in the far field with an initial fractional charge: optical “dipoles”. Computer Optics 2022; 46(2): 189-195. DOI: 10.18287/2412-6179-CO-1073.
  28. Kotlyar VV, Kovalev AA, Telegin AM. Angular and orbital angular momenta in the tight focus of a circularly polarized optical vortex. Photonics 2023; 10(2): 160. DOI: 10.3390/photonics10020160.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20