(48-3) 02 * << * >> * Russian * English * Content * All Issues

Generation of Bessel vortex beams in the subterahertz range using reflecting diffractive optical elements
V.V. Gerasimov 1,2, N.D. Osintseva 2, V.S. Pavelyev 3,4, A.N. Agafonov 3

Novosibirsk State University,
630090, Russia, Novosibirsk, Pirogova St. 1;
Budker Institute of Nuclear Physics SB RAS,
630090, Russia, Novosibirsk, Lavrentyeva Ave. 11;
Samara National Research University,
443086, Samara, Russia, Moskovskoye Shosse 34;
Image Processing Systems Institute, NRC "Kurchatov Institute",
443001, Samara, Russia, Molodogvardeyskaya 151

 PDF, 1728 kB

DOI: 10.18287/2412-6179-CO-1410

Pages: 334-341.

Full text of article: Russian language.

Abstract:
In this work, we propose a simple method for generating Bessel vortex beams in the subterahertz (subTHz) range with the orbital angular momentum with l = 1 based on reflecting metal diffractive optical elements with a continuous helical microrelief. The elements are fabricated by micromilling in a polished duralumin substrate and by tin casting, and tested using a backward wave oscillator (wavelength λ = 855 µm). When using the micromilled element, Bessel vortex beams are shown to be generated and retain a Bessel intensity profile at a distance of 20–50 mm from the reflecting element, which is in good agreement with the results of numerical simulation. An experimental estimate of the energy efficiency of this element is 63%. When using elements made by tin casting, the vortex beams are generated with a distorted profile due to the presence of residual deformations of tin, which has plasticity. Due to their high conductivity, metallic reflecting elements can be used with high power density sub-THz radiation sources such as free electron lasers and gyrotrons.

Keywords:
diffractive optics, subterahertz range, Bessel beam, vortex beam, reflecting diffractive optical element.

Citation:
Gerasimov VV, Osintseva ND, Pavelyev VS, Agafonov AN. Generation of Bessel vortex beams in the subterahertz range using reflecting diffractive optical elements. Computer Optics 2024; 48(3): 334-341. DOI: 10.18287/2412-6179-CO-1410.

Acknowledgements:
The work was done at the shared-use center "Siberian Synchrotron and Terahertz Center" and utilized the Novosibirsk free electron laser at the Budker institute of Nuclear Physics of the Siberian Branch of the RAS. The authors acknowledge core facilities “VTAN” (Novosibirsk State University) for access to the experimental equipment. The design of the diffractive optical elements was funded by a government project of the NRC "Kurchatov Institute".

References:

  1. Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory. J Opt Soc Am A 1987; 4(4): 651-654. DOI: 10.1364/JOSAA.4.000651.
  2. Durnin J, Miceli JJ, Eberly JH. Diffraction-free beams. Phys Rev Lett 1987; 58(15): 1499-1501. DOI: 10.1103/PhysRevLett.58.1499.
  3. Khonina SN, Kazanskiy NL, Karpeev SV, Butt MA. Bessel beam: Significance and applications – a progressive review. Micromachines 2020; 11(11): 997. DOI: 10.3390/mi11110997.
  4. Li SW, Aruga T. Long focal depth imaging over a long range. J Commun Res Lab 1996; 46: 309-310.
  5. Krenn M, Fickler R, Fink M, Handsteiner J, Malik M, Scheidl T, Ursin R, Zeilinger A. Communication with spatially modulated light through turbulent air across Vienna. New J Phys 2014; 16(11): 113028. DOI: 10.1088/1367-2630/16/11/113028.
  6. Li D, Imasaki K, Miyamoto S, Amano S, Mochizuki T. Conceptual design of Bessel beam cavity for free-electron laser. Int J Infrared Milli Waves 2006; 27: 165-171. DOI: 10.1007/s10762-006-9067-x.
  7. O’Holleran K, Padgett MJ, Dennis MR. Topology of optical vortex lines formed by the interference of three, four, and five plane waves. Opt Express 2006; 14(7): 3039-3044. DOI: 10.1364/OE.14.003039.
  8. Indebetouw G. Optical vortices and their propagation. J Mod Opt 1993; 40: 73-87. DOI: 10.1080/09500349314550101.
  9. Pavelyev VS, Tukmakov KN, Reshetnikov AS, Gerasimov VV, Osintseva ND, Knyazev BA. Experimental investigation of the self-healing of terahertz Bessel beams with orbital angular momentum. Computer Optics 2021; 45(5): 673-677. DOI: 10.18287/2412-6179-CO-845.
  10. Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature 2001; 412: 313-316. DOI: 10.1038/35085529.
  11. Padgett M, Bowman R. Tweezers with a twist. Nature Photon 2011; 5: 343-348. DOI: 10.1038/nphoton.2011.81.
  12. Fortin M, Pich M, Borra EF. Optical tests with Bessel beam interferometry. Opt Express 2004; 12(24): 5887-5895. DOI: 10.1364/OPEX.12.005887.
  13. Baggio M, Tamminen A, Lamberg J, Grigorev R, Pälli S-V, Ala-Laurinaho J, Nefedova I, Bourges J-L, Deng SX, Brown ER, Wallace VP, Taylor ZD. Submillimeter-wave cornea phantom sensing over an extended depth of field with an axicon-generated Bessel beam. IEEE Trans THz Sci Technol 2023; 13: 132-144. DOI: 10.1109/TTHZ.2022.3221367.
  14. Monk S, Arlt J, Robertson DA, Courtial J, Padgett MJ. The generation of Bessel beams at millimetre-wave frequencies by use of an axicon. Opt Commun 1999; 170: 213-215. DOI: 10.1016/S0030-4018(99)00463-0.
  15. Ok G, Choi S-W, Park K, Chun H. Foreign object detection by sub-terahertz quasi-Bessel beam imaging. Sensors 2012; 13: 71-85. DOI: 10.3390/s130100071.
  16. Nallappan K, Guerboukha H, Seghilani M, Ma T, Azana J, Nerguizian C, Skorobogatiy M. Multiplexing of terahertz wireless communication channels using vortex beams. 2017 42nd Int Conf on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) 2017: 1-1. DOI: 10.1109/IRMMW-THz.2017.8066888.
  17. Knyazev BA, Serbo VG. Beams of photons with nonzero projections of orbital angular momenta: new results. Phys-Usp 2018; 61: 449-479. DOI: 10.3367/UFNe.2018.02.038306.
  18. Salo J, Meltaus J, Noponen E, Westerholm J, Salomaa MM, Lönnqvist A, Säily J, Häkli J, Ala-Laurinaho J, Räisänen AV. Millimetre-wave Bessel beams using computer holograms. Electron Lett 2001; 37(13): 834-835. DOI: 10.1049/el:20010551.
  19. Meng H, Xiang B, Zhang J, Dou W, Yu Y. The generation of Bessel beam and its application in millimeter wave imaging. J Infrared Milli Terahz Waves 2014; 35: 208-217. DOI: 10.1007/s10762-013-0037-9.
  20. Yu YZ, Dou WB. Nondiffracting millimeter waves beams generated by diffractive optical elements. 2008 38th European Microwave Conf 2008: 951-954. DOI: 10.1109/EUMC.2008.4751612.
  21. Yu YZ, Dou WB. Generation of Bessel beams at mm- and submm-wave bands using binary optical elements. 2008 Global Symposium on Millimeter Waves 2008: 115-118. DOI: 10.1109/GSMM.2008.4534573.
  22. Cheng L, Hong W, Hao Z-C. Generation of electromagnetic waves with arbitrary orbital angular momentum modes. Sci Rep 2014; 4: 4814. DOI: 10.1038/srep04814.
  23. Gan Y, Meng H, Chen Y, Zhang X, Dou W. Generation of Bessel beams with 3D-printed lens. Int J RF Microw Comput Aided Eng 2020; 30(4): e22029. DOI: 10.1002/mmce.22029.
  24. Wu G-B, Chan KF, Chan CH. 3-D printed terahertz lens to generate higher order Bessel beams carrying OAM. IEEE Trans Antennas Propagat 2021; 69(6): 3399-3408. DOI: 10.1109/TAP.2020.3030915.
  25. Yu J-P, Chen S, Fan F, Cheng J-R, Xu S-T, Wang X-H, Chang S-J. Tunable terahertz wave-plate based on dual-frequency liquid crystal controlled by alternating electric field. Opt Express 2018; 26(2): 663-673. DOI: 10.1364/OE.26.000663.
  26. Kuznetsov SA, Marcotegui JA, Lapanik VI. Electrically tunable quasioptical notch filter based on a liquid-crystal-metastructure for the short millimetre-wave range. 2021 46th Int Conf on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) 2021: 1-1. DOI: 10.1109/IRMMW-THz50926.2021.9567213.
  27. Shen Z, Tang M, Chen P, Zhou S, Ge S, Duan W, Wei T, Liang X, Hu W, Lu Y-Q. Planar terahertz photonics mediated by liquid crystal polymers. Adv Optical Mater 2020; 8: 1902124. DOI: 10.1002/adom.201902124.
  28. Shevchenko OA, Vinokurov NA, Arbuzov VS, et al. The Novosibirsk free-electron laser facility. Bull Russ Acad Sci Phys 2019; 83: 228-231. DOI: 10.3103/S1062873819020278.
  29. Idehara T, Sabchevski SP, Glyavin M, Mitsudo S. The gyrotrons as promising radiation sources for THz sensing and imaging. Appl Sci 2020; 10: 980. DOI: 10.3390/app10030980.
  30. Osintseva ND, Gerasimov VV, Knyazev BA, Komlenok MS, Pavelyev VS, Yablokov DE. Terahertz Bessel and “perfect” vortex beams generated with a binary axicon and axicon with continuous relief. Computer Optics 2022; 46(3): 375-380. DOI: 10.18287/2412-6179-CO-1066.
  31. Pavelyev V, Khonina S, Degtyarev S, Tukmakov K, Reshetnikov A, Gerasimov V, Osintseva N, Knyazev B. Subwavelength diffractive optical elements for generation of terahertz coherent beams with pre-given polarization state. Sensors 2023; 23(3): 1579. DOI: 10.3390/s23031579.
  32. Choporova YuYu, Knyazev BA, Kulipanov GN, Pavelyev VS, Scheglov MA, Vinokurov NA, Volodkin BO, Zhabin VN. High-power Bessel beams with orbital angular momentum in the terahertz range. Phys Rev A 2017; 96(2): 023846. DOI: 10.1103/PhysRevA.96.023846.
  33. Kharitonov SI, Pavelyev VS, Kazanskiy NL, Strelkov YS, Tukmakov KN, Reshetnikov AS, Ganchevskaya SV, Gerasimov VV, Knyazev BA. Optimization, fabrication and characterization of a binary subwavelength cylindrical lens for the terahertz range. Computer Optics 2023; 47(1): 62-67. DOI: 10.18287/2412-6179-CO-1194.
  34. Agafonov AN, Volodkin BO, Kaveev AK, Knyazev BA, Kropotov GI, Pavel’ev VS, Soifer VA, Tukmakov KN, Tsygankova EV, Choporova YuYu. Silicon diffractive optical elements for high-power monochromatic terahertz radiation. Optoelectron Instrum Data Process 2013; 49(2): 189-195. DOI: 10.3103/S875669901302012X.
  35. Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW Jr, Ward CA. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Opt 1983; 22(7): 1099-1120. DOI: 10.1364/AO.22.001099.
  36. Agafonov AN, Knyazev BA, Pavel’ev VS, Akhmetova EI, Platonov VI. Elements of the terahertz power reflective optics with free-form surfaces. Optoelectron Instrument Proc 2019; 55: 148-153. DOI: 10.3103/S8756699019020067.
  37. Safronov A, Safronov L. Rectangular electrical connectors. Some questions of the theory and technology of pressure casting of parts from non-ferrous metal alloys. Technologies in the Electronic Industry 2015; 4: 57-63.
  38. Kozlov AM, Malyutin GE. Improving the accuracy of conca VE shaped surfaces in finish milling on CNC machines [In Russian]. News of TulGU. Engineering sciences 2016; 8-2: 120-131.
  39. Choporova Y, Knyazev B, Mitkov M, Osintseva N, Pavelyev V. Simulation of propagation and transformation of THz Bessel beams with orbital angular momentum. Physics Procedia 2016; 84: 175-183. DOI: 10.1016/j.phpro.2016.11.031.
  40. Knyazev BA, Choporova YuYu, Gerasimov VV, Kameshkov OE, Khasanov ISh, Krasnopevtsev SE, Nikitin AK, Osintseva ND, Pavelyev VS, Tukmakov KN, Reshetnikov AS. Techniques for generation of annular surface plasmon polaritons with refractive binary and reflective cylindrical diffraction gratings. AIP Conf Proc 2020; 2299(1): 030011. DOI: 10.1063/5.0030354.
  41. Kozlov G, Volkov A. Coherent source submillimeter wave spectroscopy. In Book: Grüner G, ed. Millimeter and submillimeter wave spectroscopy of solids. Vol 74. Berlin, Heidelberg: Springer-Verlag; 1998: 51-109. DOI: 10.1007/BFb0103420.
  42. Osintseva ND, Volodkin BO, Knyazev BA, Pavelyev VS, Choporova YuYu. Features of rotating Bessel beams formed using binary axicons [In Russian]. Collection of proceedings of the III international conference and youth school “Information technologies and nanotechnologies” (ITNT-2017). Samara: “Novaya Tehnika” Publisher; 2017: 294-300.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20