(48-3) 16 * << * >> * Russian * English * Content * All Issues

Technology of estimating nitrogen dioxide and carbon dioxide emissions by large industrial centers of Western Siberia
A.A. Lagutin 1, N.V. Volkov 1, E.Y. Mordvin 1, V.V. Sinitsin 1

Altai State University, 656049, Barnaul, Russia, Lenin ave. 61

 PDF, 1741 kB

DOI: 10.18287/2412-6179-CO-1420

Pages: 445-453.

Full text of article: Russian language.

Abstract:
The paper presents results of the development and testing with real data of a technology for assessing the emission of nitrogen dioxide and carbon dioxide from sources in Western Siberia. The NO2 content in the region’s troposphere was determined using data from the TROPOMI spectroradiometer of the Sentinel-5 Precursor satellite. The method of computational experiments to obtain quantitative estimates of CO2 emissions from large industrial facilities in the region consists in a joint analysis of data from TROPOMI/Sentinel-5P for the NO2 content and data from the OCO-2 orbiting carbon observatory for the CO2 content. The main procedure for data analysis is the approximation of gas content distributions along the trajectory of the OCO-2 satellite by the vector function of the Gaussian distribution. Approximation parameters (full width at half maximum and amplitude), as well as data about direction and speed of wind (obtained from the ERA5 reanalysis) are used to quantify CO2 emissions. The technology developed by the authors for obtaining quantitative estimates of anthropogenic CO2 emissions for the industrial centers of Western Siberia without using OCO-2 data is based on an empirically established relationship between approximation parameters of gases distributions.
     The results of the work are quantitative estimates of the content of nitrogen dioxide in the atmosphere and lower troposphere of Western Siberia; the annual cycle and interannual variability of NO2 in the troposphere, obtained using data from the TROPOMI/Sentinel-5P spectroradiometer; a technology for obtaining quantitative estimates of CO2 emissions from large industrial centers of the region

Keywords:
Western Siberia, greenhouse gases, nitrogen dioxide, carbon dioxide, TROPOMI/Sentinel-5P instrument, OCO-2 orbiting carbon observatory.

Citation:
Lagutin AA, Volkov NV, Mordvin EY, Sinitsin VV. Technology of estimating nitrogen dioxide and carbon dioxide emissions by large industrial centers of Western Siberia. Computer Optics 2024; 48(3): 445-453. DOI: 10.18287/2412-6179-CO-1420.

Acknowledgements:
This work was supported by the Ministry of Science and Higher Education of the Russian Federation (state order for scientific research carried out at ASU, project FZMW-2023-0007).

References:

  1. WMO greenhouse gas bulletin 2022; 18. Source: <https://library.wmo.int/idurl/4/58743>.
  2. Friedlingstein P, O’Sullivan M, Jones MW, et al. Global carbon budget 2022. Earth Syst Sci Data 2022; 14: 4811-4900. DOI: 10.5194/essd-14-4811-2022
  3. Feng L, Palmer PI, Bösch H, Parker RJ, Webb AJ, Correia CSC, Deutscher NM, Domingues LG, Feist DG, Gatti LV, Gloor E, Hase F, Kivi R, Liu Y, Miller JB, Morino I, Sussmann R, Strong K, Uchino O, Wang J, Zahn A. Consistent regional fluxes of CH4 and CO2 inferred from GOSAT proxy XCH4: XCO2 retrievals, 2010-2014. Atmospheric Chem Phys 2017; 17(7): 4781-4797. DOI: 10.5194/acp-17-4781-2017.
  4. Reuter M, Buchwitz M, Schneising O, Krautwurst S, O’Dell CW, Richter A, Bovensmann H, Burrows JP. Towards monitoring localized CO2 emissions from space: colocated regional CO2 and NO2 enhancements observed by the OCO-2 and S5P satellites. Atmospheric Chem Phys 2019; 19(14): 9371-9383. DOI: 10.5194/acp-19-9371-2019.
  5. Frankenberg C, Pollock R, Lee RAM, Rosenberg R, Blavier J-F, Crisp D, O’Dell CW, Osterman GB, Roehl C, Wennberg PO, Wunch D. The Orbiting Carbon Observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements. Atmos Meas Tech 2015; 8(1): 301-313. DOI: 10.5194/amt-8-301-2015.
  6. Eldering A, Taylor TE, O’Dell CW, Pavlick R. The OCO-3 mission: measurement objectives and expected performance based on 1 year of simulated data. Atmos Meas Tech 2019; 12(4): 2341-2370. DOI: 10.5194/amt-12-2341-2019.
  7. Pseftogkas A, Koukouli M-E, Segers A, Manders A, van Geffen J, Balis D, Meleti C, Stavrakou T, Eskes H. Comparison of S5P/TROPOMI Inferred NO2 surface concentrations with in situ measurements over Central Europe. Remote Sens 2022; 14(19): 4886. DOI: 10.3390/rs14194886.
  8. Burrows J, Hölzle E, Goede A, Visser H, Fricke W. SCIAMACHY – Scanning imaging absorption spectrometer for atmospheric chartography. Acta Astronaut 1995; 35(7): 445-451. DOI: 10.1016/0094-5765(94)00278-T.
  9. Bovensmann H, Burrows JP, Buchwitz M, Frerick J, Noël S, Rozanov VV, Chance KV, Goede APH. SCIAMACHY: Mission objectives and measurement modes. J Atmos Sci 1999; 56(2): 127-150. DOI: 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2.
  10. Veefkind JP, Aben I, Mullan KM, Förster H, de Vries J, Otter G, Claas J, Eskes HJ, de Haan JF, Kleipool Q, van Weele M, Hasekamp O, Hoogeveen R, Landgraf J, Snel R, Tol P, Ingmann P, Voors R, Kruizinga B, Vink R, Visser H, Levelt PF. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens Environ 2012; 120: 70-83. DOI: 10.1016/j.rse.2011.09.027.
  11. Butz A, Galli A, Hasekamp O, Landgraf J, Tol P, Aben I. TROPOMI aboard Sentinel-5 CH4 retrievals for aerosol and Precursor: Prospective performance of cirrus loaded atmospheres. Remote Sens Environ 2012; 120: 267-276. DOI: 10.1016/j.rse.2011.05.030.
  12. Wunch D, Toon GC, Blavier J-FL, Washenfelder RA, Notholt J, Connor BJ, Griffith DWT, Sherlock V, Wennberg PO. The total carbon column observing network. Philos Trans Royal Soc A 2011; 369(1943): 2087-2112. DOI: 10.1098/rsta.2010.0240.
  13. Lagutin AA, Mordvin EYu, Volkov NV, Tuchina NV. Estimation of natural gas flaring volume at the Western Siberia flares using satellite night-time data in the visible and near-infrared range. CEUR Workshop Proc 2020; 2534: 22-26.
  14. Strahler A, Muchoney D, Borak J, Friedl M, Gopal S, Lambin E, Moody A. MODIS land cover product algorithm theoretical basis document (ATBD) version 5.0. 1999. Source: <https://lpdaac.usgs.gov/products/mcd12q1v006/>.
  15. Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, De Chiara G et al. The ERA5 global reanalysis. Q J R Meteorol Soc 2020; 146: 1999-2049. DOI: 10.1002/qj.3803.
  16. Liu Z, Ciais P, Deng Z, et al. Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nat Commun 2020; 11: 5172. DOI: 10.1038/s41467-020-18922-7.
  17. Levenberg K. A method for the solution of certain non-linear problems in least squares. Q Appl Math 1944; 2: 164-168. DOI: 10.1090/qam/10666.
  18. Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 1963; 11: 431-441. DOI: 10.1137/0111030.
  19. Hakkarainen J, Ialongo I, Maksyutov S, Crisp D. Analysis of four years of global XCO2 anomalies as seen by Orbiting Carbon Observatory-2. Remote Sens 2019; 11: 850. DOI: 10.3390/rs11070850.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20