(48-3) 16 * << * >> * Russian * English * Content * All Issues
  
Technology of estimating nitrogen dioxide and carbon dioxide emissions by large industrial centers of Western Siberia
 A.A. Lagutin 1, N.V. Volkov 1, E.Y. Mordvin 1, V.V. Sinitsin 1
 1 Altai State University, 656049, Barnaul, Russia, Lenin ave. 61
  PDF, 1741 kB
DOI: 10.18287/2412-6179-CO-1420
Pages: 445-453.
Full text of article: Russian language.
 
Abstract:
The  paper presents results of the development and testing with real data of a  technology for assessing the emission of nitrogen dioxide and carbon dioxide  from sources in Western Siberia. The NO2  content in the region’s troposphere was determined using data from the TROPOMI  spectroradiometer of the Sentinel-5 Precursor satellite. The method of  computational experiments to obtain quantitative estimates of CO2  emissions from large industrial facilities in the region consists in a joint  analysis of data from TROPOMI/Sentinel-5P for the NO2 content and data  from the OCO-2 orbiting carbon observatory for the CO2 content. The  main procedure for data analysis is the approximation of gas content distributions  along the trajectory of the OCO-2 satellite by the vector function of the  Gaussian distribution. Approximation parameters (full width at half maximum and  amplitude), as well as data about direction and speed of wind (obtained from  the ERA5 reanalysis) are used to quantify CO2 emissions. The technology  developed by the authors for obtaining quantitative estimates of anthropogenic  CO2 emissions for the industrial centers of Western   Siberia without using OCO-2 data is based on an empirically established  relationship between approximation parameters of gases distributions.
     The  results of the work are quantitative estimates of the content of nitrogen  dioxide in the atmosphere and lower troposphere of Western Siberia; the annual  cycle and interannual variability of NO2 in the troposphere,  obtained using data from the TROPOMI/Sentinel-5P spectroradiometer; a technology  for obtaining quantitative estimates of CO2 emissions from large  industrial centers of the region
Keywords:
Western   Siberia, greenhouse gases,  nitrogen dioxide, carbon dioxide, TROPOMI/Sentinel-5P instrument, OCO-2  orbiting carbon observatory.
Citation:
  Lagutin AA, Volkov NV,  Mordvin EY, Sinitsin VV. Technology  of estimating nitrogen dioxide and carbon dioxide emissions by large industrial  centers of Western Siberia.  Computer Optics 2024; 48(3): 445-453. DOI: 10.18287/2412-6179-CO-1420.
Acknowledgements:
  This work was supported  by the Ministry of Science and Higher Education of the Russian Federation  (state order for scientific research carried out at ASU, project  FZMW-2023-0007).
References:
  - WMO greenhouse gas bulletin 2022; 18. Source:  <https://library.wmo.int/idurl/4/58743>.
 
  - Friedlingstein P, O’Sullivan M,  Jones MW, et al. Global  carbon budget 2022. Earth Syst Sci Data 2022; 14: 4811-4900. DOI:  10.5194/essd-14-4811-2022
 
  - Feng L, Palmer PI,  Bösch H, Parker RJ, Webb AJ, Correia CSC, Deutscher NM, Domingues LG, Feist DG,  Gatti LV, Gloor E, Hase F, Kivi R, Liu Y, Miller JB, Morino I, Sussmann R,  Strong K, Uchino O, Wang J, Zahn A. Consistent regional fluxes of CH4  and CO2 inferred from GOSAT proxy XCH4: XCO2  retrievals, 2010-2014. Atmospheric Chem  Phys 2017; 17(7): 4781-4797. DOI:  10.5194/acp-17-4781-2017.
     
  - Reuter M, Buchwitz  M, Schneising O, Krautwurst S, O’Dell CW, Richter A, Bovensmann H, Burrows JP.  Towards monitoring localized CO2 emissions from space: colocated  regional CO2 and NO2 enhancements observed by the OCO-2  and S5P satellites. Atmospheric Chem Phys  2019; 19(14): 9371-9383. DOI: 10.5194/acp-19-9371-2019.
     
  - Frankenberg C, Pollock R, Lee RAM, Rosenberg R, Blavier J-F, Crisp D,  O’Dell CW, Osterman GB, Roehl C, Wennberg PO, Wunch D. The Orbiting Carbon  Observatory (OCO-2): spectrometer performance evaluation using pre-launch  direct sun measurements. Atmos Meas Tech 2015; 8(1): 301-313. DOI: 10.5194/amt-8-301-2015.
     
  - Eldering A, Taylor TE, O’Dell CW,  Pavlick R. The OCO-3 mission: measurement objectives and expected performance  based on 1 year of simulated data. Atmos  Meas Tech 2019; 12(4): 2341-2370. DOI:  10.5194/amt-12-2341-2019.
     
  - Pseftogkas A,  Koukouli M-E, Segers A, Manders A, van Geffen J, Balis D, Meleti C, Stavrakou  T, Eskes H. Comparison of S5P/TROPOMI Inferred NO2 surface  concentrations with in situ measurements over Central Europe. Remote Sens 2022; 14(19): 4886. DOI:  10.3390/rs14194886. 
     
  - Burrows J, Hölzle E, Goede A, Visser H, Fricke W. SCIAMACHY – Scanning  imaging absorption spectrometer for atmospheric chartography. Acta Astronaut 1995; 35(7):  445-451. DOI: 10.1016/0094-5765(94)00278-T.
     
  - Bovensmann H, Burrows JP, Buchwitz M, Frerick J, Noël S,  Rozanov VV, Chance KV, Goede APH. SCIAMACHY: Mission  objectives and measurement modes. J Atmos Sci 1999; 56(2): 127-150. DOI: 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2.
     
  - Veefkind JP, Aben  I, Mullan KM, Förster H, de Vries J, Otter G, Claas J, Eskes HJ, de Haan JF,  Kleipool Q, van Weele M, Hasekamp O, Hoogeveen R, Landgraf J, Snel R, Tol P,  Ingmann P, Voors R, Kruizinga B, Vink R, Visser H, Levelt PF. TROPOMI on the  ESA Sentinel-5 Precursor: A GMES mission for global observations of the  atmospheric composition for climate, air quality and ozone layer applications. Remote Sens Environ 2012; 120: 70-83. DOI:  10.1016/j.rse.2011.09.027.
     
  - Butz A, Galli A,  Hasekamp O, Landgraf J, Tol P, Aben I. TROPOMI aboard Sentinel-5 CH4 retrievals  for aerosol and Precursor: Prospective performance of cirrus loaded  atmospheres. Remote Sens Environ 2012;  120: 267-276. DOI: 10.1016/j.rse.2011.05.030.
     
  - Wunch D, Toon GC,  Blavier J-FL, Washenfelder RA, Notholt J, Connor BJ, Griffith DWT, Sherlock V,  Wennberg PO. The total carbon column observing network. Philos Trans Royal Soc  A 2011; 369(1943): 2087-2112. DOI:  10.1098/rsta.2010.0240.
     
  - Lagutin AA, Mordvin  EYu, Volkov NV,  Tuchina NV.  Estimation of natural gas flaring volume at the Western   Siberia flares using satellite night-time data in the visible and  near-infrared range. CEUR Workshop Proc  2020; 2534: 22-26.
     
  - Strahler A, Muchoney D, Borak J, Friedl M, Gopal S, Lambin E, Moody A.  MODIS land cover product algorithm theoretical basis document (ATBD) version  5.0. 1999. Source: <https://lpdaac.usgs.gov/products/mcd12q1v006/>.
     
  - Hersbach H, Bell B,  Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu  R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P,  Biavati G, Bidlot J, Bonavita M, De Chiara G et al. The ERA5 global reanalysis.  Q J R Meteorol Soc 2020; 146: 1999-2049. DOI: 10.1002/qj.3803.
     
  - Liu Z, Ciais P,  Deng Z, et al. Near-real-time monitoring of global CO2 emissions  reveals the effects of the COVID-19 pandemic. Nat Commun 2020; 11: 5172. DOI: 10.1038/s41467-020-18922-7.
     
  - Levenberg K. A  method for the solution of certain non-linear problems in least squares. Q Appl Math 1944; 2: 164-168. DOI: 10.1090/qam/10666.
     
  - Marquardt DW. An  algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 1963; 11: 431-441. DOI:  10.1137/0111030. 
 
  - Hakkarainen J, Ialongo I,  Maksyutov S, Crisp D. Analysis of four years of global XCO2  anomalies as seen by Orbiting Carbon Observatory-2. Remote Sens 2019; 11: 850. DOI: 10.3390/rs11070850.
 
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20