(48-3) 17 * << * >> * Russian * English * Content * All Issues

Taking into account the lens geometric distortion during accumulation of blurred star images in an astro-inertial attitude sensor
S N. Vasilyuk 1

Electrooptika, LLC, 107076, Moscow, Russia, Stromynka 18, k. 1

 PDF, 1031 kB

DOI: 10.18287/2412-6179-CO-1408

Pages: 454-459.

Full text of article: Russian language.

Abstract:
In this work, when calculating the star blur trajectory, geometric distortion in the accumulated images is taken into account in two ways: analytical and numerical. The analytical approach uses a model of direct distortion correction, which makes it possible to obtain a new differential equation for the blur trajectory in the image plane with distortion. The numerical approach uses a model of reverse distortion correction that converts points of a trajectory calculated in the ideal image plane into the image plane with distortion. This approach makes it possible to preserve the structure of the subpixel accumulation and star detection algorithms previously obtained for an ideal image. An example of allowing for the radial distortion parameters obtained by calibrating a real camera is given.

Keywords:
star tracker, astroinertial navigation system, geometric distortion, blur correction, images stacking.

Citation:
Vasilyuk NN. Taking into account the lens geometric distortion during accumulation of blurred star images in an astro-inertial attitude sensor. Computer Optics 2024; 48(3): 454-459. DOI: 10.18287/2412-6179-CO-1408.

References:

  1. Vasilyuk NN. Synthesis of the rotational blur kernel in a digital image using measurements of a triaxial gyroscope. Computer Optics 2022; 46(5): 763-773. DOI: 10.18287/2412-6179-CO-1081.
  2. Vasilyuk NN. Correction of rotational blur in images of stars observed by an astroinertial attitude sensor against the background of the daytime sky. Computer Optics 2023; 47(1): 79-91. DOI: 10.18287/2412-6179-CO-1141.
  3. Vasilyuk NN. Subpixel stacking and detection of blurred star images observed by an astroinertial attitude sensor against the background of the daytime sky. Computer Optics 2024; 48(2): 303-311. DOI: 10.18287/2412-6179-CO-1309.
  4. Baskakov SI. Radiotechnical circuits and signals [In Russian]. Moscow: “High school” Publisher; 2000. ISBN 5-06-003843-2.
  5. Astapov UM, Vasiliev DV, Zalozhnev UI. Theory of opto-electronic tracking systems [In Russian]. Moscow: “Nauka” Publisher; 1988. ISBN 5-02-013886-X.
  6. Vasilyuk NN, Nefedov GA, Sidorova EA, Shagimuratova NO. Calibration of intrinsic parameters of a star tracker’s digital camera based on ground-based stars observations, taking into account atmospheric refraction and light aberration [In Russian]. Izmeriteljnaya Tehnika 2023; 8: 42-52. DOI: 10.32446/0368-1025it.2023-8-42-52.
  7. Smetanin PS, Avanesov GA, Bessonov RV, Kurkina AN, Nikitin AV. Geometric calibration of high-precision star tracker by starry sky. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 2017; 14(2): 9-23. DOI: 10.21046/2070-7401-2017-14-2-9-23.
  8. Enright J, Jovanovic I, Vaz B. Autonomous recalibration of star trackers. IEEE Sens J 2018; 18(18): 7708-7720. DOI: 10.1109/JSEN.2018.2857621.
  9. Chen Z, Zheng Y, Zhan Y, Li C, Chen B, Zhang H. Distortion model of star tracker on-orbit calibration algorithms based on interstar angles. J Phys Conf Ser 2022; 2235: 012053. DOI: 10.1088/1742-6596/2235/1/012053.
  10. Gebgart AY, Kolosov MP. Design features of the lens objectives of celestial-orientation apparatus for spacecraft. J Opt Technol 2015; 82(6): 357-360. DOI: 10.1364/JOT.82.000357.
  11. Kolosov MP, Gebgart AY. Optical systems of modern static spacecraft-orientation devices. J Opt Technol 2017; 84(12): 793-798. DOI: 10.1364/JOT.84.000793.
  12. Beresin VV, Tsytsulin AK. Revelation and evaluation of coordinates of point object images in problems of astronavigation and adaptive optics [In Russian]. Bulletin of Pacific National University 2008; 1(8): 11-20.
  13. Avanesov GA, Belinskaya EV, Brysin NN, Filippova OV, Shamis VA, Elyashev YaD. Astrometric model of a stellar spacecraft orientation sensor. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 2020; 17(1): 89-98. DOI 10.21046/2070-7401-2020-17-1-89-98.
  14. Conrady A. Decentered lens systems. Mon Notices Royal Astron Soc 1919; 79(5): 384-390. DOI: 10.1093/mnras/79.5.384.
  15. Brown DC. Decentering distortion of lenses. Photogramm Eng Remote Sensing 1966; 32(3): 444-462.
  16. Brown DC. Advanced methods for the calibration of metric cameras. U.S. Army Engineer Topographic Laboratories. Contract DA-44-009-AMC-1457(X). Melbourne, Fl: DBA Systems Inc; 1968.
  17. Brown DC. Close range camera calibration. Photogramm Eng Remote Sensing 1971; 37(8): 855-866.
  18. Kenefick JF, Gyer MS, Harp BF. Analytical self-calibration. Photogramm Eng Remote Sensing 1972; 38(11): 1117-1126.
  19. Lobanov AN. Photogrammetry [In Russian]. 2nd ed. Moscow: “Nedra” Publisher; 1984..

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20