(48-4) 12 * << * >> * Russian * English * Content * All Issues
  
Uncertainty-based quantization method for stable training of binary neural networks
 A.V. Trusov 1,2,3, D.N. Putintsev 2,3, E.E. Limonova 2,3
 1 Moscow Institute of Physics and Technology (National Research University),
     141701, Russia, Dolgoprudnii, Institutskiy per. 9;
     2 Federal Research Center “Computer Science and Control” of Russian Academy of Sciences,
     19333, Russia, Moscow, Vavilova str. 44, corp. 2;
     3 LLC “Smart Engines Service”,
     117312, Russia, Moscow, prospect 60-letiya Oktyabrya 9
 
 PDF, 1382 kB
  PDF, 1382 kB
DOI: 10.18287/2412-6179-CO-1427
Pages: 573-581.
Full text of article: English language.
 
Abstract:
Binary  neural networks (BNNs) have gained attention due to their computational  efficiency. However, training BNNs has proven to be challenging. Existing  algorithms either fail to produce stable and high-quality results or are overly  complex for practical use. In this paper, we introduce a novel quantizer called  UBQ (Uncertainty-based quantizer) for BNNs, which combines the advantages of  existing methods, resulting in stable training and high-quality BNNs even with  a low number of trainable parameters. We also propose a training method  involving gradual network freezing and batch normalization replacement,  facilitating a smooth transition from training mode to execution mode for BNNs.
     To  evaluate UBQ, we conducted experiments on the MNIST and CIFAR-10 datasets and  compared our method to existing algorithms. The results demonstrate that UBQ  outperforms previous methods for smaller networks and achieves comparable  results for larger networks.
Keywords:
binary  networks, neural networks training, quantization, gradient estimation,  approximation.
Citation:
  Trusov  AV, Putintsev DN, Limonova EE. Uncertainty-based quantization method for stable  training of binary neural networks. Computer Optics 2024; 48(4): 573-581. DOI: 10.18287/2412-6179-CO-1427.
References:
  - Hoffmann  J, Borgeaud S, Mensch A, et al. An empirical analysis of compute-optimal large  language model training. Adv Neural Inf Process Syst 2022; 35: 30016-30030.
 
- Rombach  R, Blattmann A, Lorenz D, Esser P, Ommer B. High-resolution image synthesis  with latent diffusion models. Proc IEEE/CVF Conf on Computer Vision and Pattern  Recognition 2022: 10684-10695.
 
- Ilyuhin SA, Sheshkus AV, Arlazarov VL. Recognition of images of korean  characters using embedded networks. Proc SPIE 2020; 11433: 1143311. DOI:  10.1117/12.2559453.
 
- Bulatov K, Arlazarov VV, Chernov T, Slavin O, Nikolaev D. Smart IDReader:  Document recognition in video stream, 2017 14th IAPR Int Conf on Document  Analysis and Recognition (ICDAR) 2017: 39-44. DOI: 10.1109/ICDAR.2017.347.
 
- Sheshkus A,  Chirvonaya A, Arlazarov VL. Tiny CNN for feature point description for document  analysis: approach and dataset. Computer Optics 2022; 46(3): 429-435. DOI:  10.18287/2412-6179-CO-1016.
 
- Chernyshova YS,  Chirvonaya AN, Sheshkus AV. Localization of characters horizontal bounds in  text line images with fully convolutional network. Proc SPIE 2020; 11433: 114333F. DOI:  10.1117/12.2559449.
 
- Liang T, Bao H, Pan  W, Pan F. ALODAD: An anchor-free lightweight object detector for autonomous  driving, IEEE Access 2022; 10: 40701-40714. DOI: 10.1109/ACCESS.2022.3166923.
 
- Sivapalan G, Nundy  KK, Dev S, Cardiff B, John D. Annet: a lightweight neural network for ecg  anomaly detection in iot edge sensors. IEEE Trans Biomed Circuits Syst 2022;  16(1): 24-35. DOI: 10.1109/TBCAS.2021.3137646.
 
- He Z, Zhang X, Cao  Y, Liu Z, Zhang B, Wang X. LiteNet: Lightweight neural network for detecting  arrhythmias at resource-constrained mobile devices. Sensors 2018; 18(4): 1229.  DOI: 10.3390/s18041229.
 
- Gholami A. Kim S, Dong Z, Yao  Z, Mahoney MW, Keutzer K. A survey of quantization methods for efficient neural  network inference. In Book: Thiruvathukal GK, Lu Y-H, Kim J, Chen Y, Chen B,  eds. Low-power computer vision. New    York: Chapman and Hall/CRC; 2022: 291-326.
 
- Rastegari M,  Ordonez V, Redmon J, Farhadi A. XNOR-Net: Imagenet classification using binary  convolutional neural networks, In Book: Leibe B, Matas J, Sebe N, Welling M,  eds. European conference on computer vision. Cham: Springer International  Publishing AG; 2016: 525-542. DOI: 10.1007/978-3-319-46493-0_32.
 
- Moss DJ, Nurvitadhi E, Sim J, Mishra A, Marr D, Subhaschandra S, Leong PH.  High performance binary neural networks on the Xeon+FPGA™ platform. 2017 27th  Int Conf on Field Programmable Logic and Applications (FPL) 2017: 1-4. DOI:  10.23919/FPL.2017.8056823.
 
- He S, Meng H, Zhou  Z, Liu Y, Huang K, Chen G. An efficient GPU-accelerated inference engine for  binary neural network on mobile phones. J Syst Archit 2021; 117: 102156.
 
- Zhang J, Pan Y, Yao  T, Zhao H, Mei T. daBNN: A super fast inference framework for binary neural  networks on arm devices. Proc 27th ACM Int Conf on Multimedia 2019: 2272-2275.
 
- Frickenstein A,  Vemparala M-R, Mayr J, Nagaraja N-S, Unger C, Tombari F, Stechele W. Binary  DAD-Net: Binarized driveable area detection network for autonomous driving.  2020 IEEE Int Conf on Robotics and Automation (ICRA) 2020: 2295-2301.
 
- Xiang X, Qian Y, Yu  K. Binary deep neural networks for speech recognition. INTERSPEECH 2017:  533-537.
 
- Alemdar H, Leroy V, Prost-Boucle A, Pétrot F. Ternary neural networks for  resource-efficient ai  applications. 2017 Int Joint Conf on Neural Networks (IJCNN) 2017: 2547-2554.
 
- Courbariaux M,  Bengio Y, David J-P. Binaryconnect:  Training deep neural networks with binary weights during propagations. Proc  28th Int Conf on Neural Information Processing Systems (NIPS'15) 2015; 2:  3123-3131.
 
- Liu B, Li F, Wang  X, Zhang B, Yan J. Ternary weight networksю  ICASSP 2023-2023 IEEE Int Conf on Acoustics, Speech and Signal Processing  (ICASSP) 2023: 1-5. DOI: 10.1109/ICASSP49357.2023.10094626.
 
- Liu Z, Wu B, Luo W,  Yang X, Liu W, Cheng K-T. Bi-Real Net: Enhancing the performance of 1-bit cnns  with improved representational capability and advanced training algorithm. Proc  European Conf on Computer Vision (ECCV) 2018: 722-737.
 
- Chen H, Wang Y, Xu  C, Shi B, Xu C, Tian Q, Xu C. AdderNet: Do we really need multiplications in  deep learning? Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition  2020: 1468-1477.
 
- Limonova EE. Fast  and gate-efficient approximated activations for bipolar morphological neural  networks. Informatsionnye Tekhnologii i Vychslitel'nye Sistemy 2022; 2: 3-10.  DOI: 10.14357/20718632220201.
 
- Bengio Y, Léonard  N, Courville A. Estimating or propagating gradients through stochastic neurons  for conditional computation. arXiv Preprint. 2013. Source:  <https://arxiv.org/abs/1308.3432>.
 
- Bethge J, Yang H, Bornstein M, Meinel C. Back to simplicity: How to train  accurate bnns from scratch? arXiv Preprint. 2019. Source:  <https://arxiv.org/abs/1906.08637>.
 
- Bulat A,  Tzimiropoulos G. XNOR-Net++: Improved binary neural networks. arXiv Preprint.  2019. Source: <https://arxiv.org/abs/1909.13863>.
 
- Xu Z, Lin M, Liu J,  Chen J, Shao L, Gao Y, Tian Y, Ji R. Recu:  Reviving the dead weights in binary neural networks. Proc IEEE/CVF Int Conf on  Computer Vision 2021: 5198-5208.
 
- Gong R, Liu X,  Jiang S, Li T, Hu P, Lin J, Yu F, Yan J. Differentiable soft quantization:  Bridging full-precision and low-bit neural networks. Proc IEEE/CVF Int Conf on  Computer Vision 2019: 4852-4861.
 
- Lahoud F, Achanta  R, Márquez-Neila P, Süsstrunk S. Self-binarizing networks. arXiv Preprint.  2019. Source: <https://arxiv.org/abs/1902.00730>.
 
- Yang J, Shen X, Xing J, Tian X, Li H, Deng B, Huang J, Hua X-s.  Quantization networks. Proc IEEE/CVF Conf on Computer Vision and Pattern  Recognition 2019: 7308-7316.
 
- Meng X, Bachmann R,  Khan ME. Training binary neural networks using the bayesian learning rule. Int  Conf on Machine Learning (PMLR) 2020: 6852-6861.
 
- Jacob B, Kligys S,  Chen B, Zhu M, Tang M, Howard A, Adam H, Kalenichenko D. Quantization and  training of neural networks for efficient integer-arithmetic-only inference.  Proc IEEE Conf on Computer Vision and Pattern Recognition 2018: 2704-2713.
 
- Paszke A, Gross S,  Massa F, et al. PyTorch: An imperative style, high-performance deep learning  library. Proc 33rd Int Conf on Neural Information Processing Systems (NIPS'19)  2019: 8026-8037.
 
- Keras: Simple.  Flexible. Powerful. 2023. Source: <https://keras.io>.
 
- Xue P, Lu Y, Chang  J, Wei X, Wei Z. Fast and accurate binary neural networks based on depth-width  reshaping. Proc AAAI Conf on Artificial Intelligence 2023; 37: 10684-10692.
 
- Ioffe S, Szegedy C.  Batch normalization: Accelerating deep network training by reducing internal  covariate shift. Proc 32nd Int Conf on on Machine Learning (ICML'15) 2015; 37:  448-456.
 
- LeCun Y. The mnist  database of handwritten digits. 1998. Source:  <http://yann.lecun.com/exdb/mnist/>.
 
- Simonyan K,  Zisserman A. Very deep convolutional networks for large-scale image  recognition. arXiv Preprint. 2014. Source:  <https://arxiv.org/abs/1409.1556>.
 
- Krizhevsky A,  Hinton G, et al. Learning multiple layers of features from tiny images. 2009.  Source:         <https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf>.
 
- Hubara I,  Courbariaux M, Soudry D, El-Yaniv R, Bengio Y. Binarized neural networks. In  Book: Lee D, Sugiyama M, Luxburg U, Guyon I, Garnett R, eds. Advances in Neural  Information Processing Systems 29 (NIPS 2016). 2016. Source:        <https://proceedings.neurips.cc/paper_files/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf>.
 
- Trusov AV, Limonova EE, Nikolaev DP, Arlazarov VV. Fast matrix  multiplication for binary and ternary CNNs on ARM CPU. 2022 26th Int Conf on  Pattern Recognition (ICPR) 2022: 3176-3182. DOI:  10.1109/ICPR56361.2022.9956533.
 
- Zhang D, Yang J, Ye  D, Hua G. Lq-nets: Learned  quantization for highly accurate and compact deep neural networks. In Book:  Ferrari V, Hebert M, Sminchisescu C, Weiss Y, eds. Computer Vision – ECCV 2018.  Cham: Springer Nature Switzerland AG; 2018: 365-382.
 
- Darabi S, Belbahri  M, Courbariaux M, Nia VP. Regularized binary network training. arXiv Preprint.  2018. Source: <https://arxiv.org/abs/1812.11800>.
 
- Sher AV, Trusov AV,  Limonova EE, Nikolaev DP, Arlazarov VV. Neuron-by-neuron quantization for  efficient low-bit qnn training. Mathematics 2023; 11(9): 2112. DOI:  10.3390/math11092112.
 
- Hinton GE,  Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR. Improving neural  networks by preventing co-adaptation of feature detectors. arXiv Preprint.  2012. Source: <https://arxiv.org/abs/1207.0580>. 
- Kingma DP, Ba J. Adam: A method  for stochastic optimization, arXiv Preprint. 2014. Source:  <https://arxiv.org/abs/1412.6980>.
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20