(48-5) 03 * << * >> * Russian * English * Content * All Issues
Spin Hall effect of linearly polarized light passed through a metasurface
A.G. Nalimov 1,2, A.A. Kovalev 1,2
1 Image Processing Systems Institute, NRC "Kurchatov Institute",
443001, Samara, Russia, Molodogvardeyskaya 151;
2 Samara National Research University,
443086, Samara, Russia, Moskovskoye Shosse 34
PDF, 2726 kB
DOI: Xxx
Pages: Xxx.
Full text of article: Russian language.
Abstract:
The density of the longitudinal component of the spin angular momentum (SAM) vector is calculated for a paraxial vector Gaussian beam with a periodic one-dimensional modulation. For the beam under consideration, the SAM in the initial plane is zero and the polarization is inhomogeneous and linear. When this beam propagates in free space, due to periodic modulation it is effectively divided into two beams with left-handed and right-handed elliptical polarization. That is, in the cross section of the beam, regions with spins of different signs are separated in space, which is a manifestation of the spin Hall effect. This beam can be formed using a metasurface whose transmission periodically depends on one coordinate.
Keywords:
metasurface, spin angular momentum, paraxial vector beam, Hall effect.
Citation:
Nalimov AG, Kovalev AA. Spin Hall effect of linearly polarized light passed through a metasurface. Computer Optics 2024; 48(5): 662-668. DOI: 10.18287/2412-6179-CO-1500.
Acknowledgements:
The work was partly funded by the Russian Science Foundation under grant #23-12-00236 (Section "Numerical simulation") and NRC "Kurchatov Institute" within the State assignment (Sections "Introduction" and "Conclusion").
References:
- Yin X, Ye Z, Rho J, Wang Y, Zhang X. Photonic spin Hall Effect at metasurfaces. Science 2013; 339(6126): 1405-1407. DOI: 10.1126/science.1231758.
- Kim M, Lee D, Yang Y. Reaching the highest efficiency of spin Hall effect of light in the near-infrared using all-dielectric metasurfaces. Nat Commun 2022; 13: 2036. DOI: 10.1038/s41467-022-29771-x.
- Kim M, Lee D, Ko B, Rho J. Diffraction-induced enhancement of optical spin Hall effect in a dielectric grating. APL Photonics 2020; 5(6): 066106. DOI: 10.1063/5.0009616.
- Li Y, Liu Y, Ling X, Yi X, Zhou X, Ke Y, Luo H, Wen S, Fan D. Observation of photonic spin Hall effect with phase singularity at dielectric metasurfaces. Opt Express 2015; 23: 1767-1774.
- Jia Y, Liu Y, Zhang W, Wang J, Wang Y, Gong S, Liao G. Ultra-wideband metasurface with linear-to-circular polarization conversion of an electromagnetic wave. Opt Mater Express 2018; 8: 597-604.
- Fahad AK, Ruan C, Nazir R, Raza MT. Multifunctional multi-band metasurface for linear to circular polarization conversion in transmission and reflection modes. Results Phys 2023; 50: 106595. DOI: 10.1016/j.rinp.2023.106595.
- Zhang T, Wang H, Peng C, Chen Z. Linear-to-dual-circular polarization decomposition metasurface based on rotated trimming-stub-loaded circular patch. Crystals 2023; 13: 831. DOI: 10.3390/cryst13050831.
- Li SJ, Han BW, Li ZY, Liu XB, Huang GS, Li RQ, Cao XY. Transmissive coding metasurface with dual-circularly polarized multi-beam. Opt Express 2022; 30: 26362-26376.
- Wang Z, Zhou D, Liu Q, Yan M, Wang X. Dual-mode vortex beam transmission metasurface antenna based on linear-to-circular polarization converter. Opt Express 2023; 31: 35632-35643.
- Zhang T, Wang H, Peng C, Chen Z, Wang X. C-band linear polarization metasurface converter with arbitrary polarization rotation angle based on notched circular patches. Crystals 2022; 12(11): 1646. DOI: 10.3390/cryst12111646.
- Cheng H, Chena S, Yu P, Li J, Xie B, Li Z, Tian J. Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial. Appl Phys Lett 2013; 103: 223102.
- Zhang Z, Luo J, Song M, Yu H, Large-area, broadband and high-efficiency nearinfrared linear polarization manipulating metasurface fabricated by orthogonal interference lithography. Appl Phys Lett 2015; 107: 241904.
- Li QT, Dong F, Wang B, Gan F, Chen J, Song Z, Xu L, Chu W, Xiao XF, Gong Q, Li Y, Polarization-independent and high-efficiency dielectric metasurfaces for visible light. Opt Express 2016; 24(15): 16309-16319.
- Yang L, Wu D, Liu Y, Liu C, Xu Z, Li H, Yu Z, Yu L, Ye H. High-efficiency all-dielectric transmission metasurface for linearly polarized light in the visible region. Photon Res 2018; 6(6): 517-524.
- Fang ZH, Chen H, An D, Luo CR, Zhao XP. Manipulation of visible-light polarization with dendritic cell-cluster metasurfaces. Sci Rep 2018; 8: 9696.
- Kotlyar VV, Stafeev SS, Zaitsev VD, Telegin AM. Poincaré beams at the tight focus: inseparability, radial spin hall effect, and reverse energy flow. Photonics 2022; 9(12): 969. DOI: 10.3390/photonics9120969.
- Kotlyar VV, Stafeev SS, Zaitsev VD, Kovalev AA. Multiple optical spin-orbit Hall effect at the tight focus. Phys Lett A 2023; 458: 128596. DOI: 10.1016/j.physleta.2022.128596.
- Kovalev AA, Kotlyar VV, Stafeev SS. Spin Hall effect in the paraxial light beams with multiple polarization singularities. Micromachines 2023; 14(4): 777. DOI: 10.3390/mi14040777.
- Kotlyar VV, Kovalev AA. Spin Hall effect of two-index paraxial vector propagation-invariant beams. Photonics 2023; 10(11): 1288. DOI: 10.3390/photonics10111288.
- Kotlyar VV, Kovalev AA, Kozlova ES, Telegin AM. Hall effect at the focus of an optical vortex with linear polarization. Micromachines 2023; 14(4): 788. DOI: 10.3390/mi14040788.
- Barnett SM, Allen L. Orbital angular momentum and nonparaxial light beams. Opt Commun 1994; 110: 670-678. DOI: 10.1016/0030-4018(94)90269-0.
- Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photon 2009; 1: 1-57.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20