(48-6) 01 * << * >> * Russian * English * Content * All Issues

Inhomogeneous chiral metamaterials: optical wave reflection analysis with regard to the dispersion of material parameters
D.N. Panin 1, O.V. Osipov 1

Povolzhskiy State University of Telecommunications and Informatics,
443010, Samara, Russia, L. Tolstoy St. 23

 PDF, 1791 kB

DOI: 10.18287/2412-6179-CO-1443

Pages: 809-815.

Full text of article: Russian language.

Abstract:
The paper considers a planar chiral metamaterial of the optical spectrum. The material parameters of metamaterial depend on the frequency and one spatial coordinate. The mathematical model of metastructure is based on the well-known dispersion models of the permittivity, permeability and chirality parameter. A novelty in the mathematical model of a metamaterial is the consideration of the heterogeneity of all material parameters. In this paper we consider a problem of the incidence of a plane linearly polarized optical wave on a planar layer of a chiral metamaterial. We develop a method for calculating reflection coefficients of an optical wave from the considered inhomogeneous chiral structure, which is based on using a differential sweep method. When constructing a mathematical model, the cross-polarization of the optical wave field was taken into account, which consists in the appearance of orthogonal components during the interaction of the field with a chiral metamaterial. The solution of the problem was reduced to a matrix differential equation for the unknown reflection coefficients of the main and cross-polarized components of the optical field. Chiral metamaterials with linear and parabolic inhomogeneity profiles were considered in the work. Based on the results of numerical calculation of reflection coefficients of the main and cross-polarized components, it is proved that the inhomogeneity of the material parameters leads to a significant decrease in the level of cross-polarized component of reflection. It is shown that the use of inhomogeneous chiral layers also makes it possible to lower the level of reflection of the optical field main component. It is also proved that a layer of a planar inhomogeneous chiral metamaterial in the optical spectrum reflects waves of s- and p- polarizations differently.

Keywords:
optical wave, chiral metamaterial, inhomogeneity, dispersion, reflection, cross-polarization.

Citation:
Panin DN, Osipov OV. Inhomogeneous chiral metamaterials: optical wave reflection analysis with regard to the dispersion of material parameters. Computer Optics 2024; 48(6): 809-815. DOI: 10.18287/2412-6179-CO-1443.

Acknowledgements:
This work was conducted with the financial support from the RF Ministry of Science and Higher Education at the Scientific and Educational Center “Engineering of the Future” (2021).

References:

  1. Capolino F. Theory and phenomena of metamaterials. Boca Raton: Taylor & Francis – CRC Press; 2009.
  2. Engheta N, Ziolkowski RW. Metamaterials: Physics and engineering explorations. Hoboken: Wiley; 2006.
  3. Iyer AK, Alù A, Epstein A. Metamaterials and metasurfaces – Historical context, recent advances, and future directions. IEEE Trans Antennas Propag 2020; 68(3): 1223-1231. DOI: 10.1109/TAP.2020.2969732.
  4. Zheludev NI. A roadmap for metamaterials. Opt Photonics News 2011; 22: 31-35. DOI: 10.1364/OPN.22.3.000030.
  5. Shcherbakov MR, Neshev DN, Hopkins B. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett 2014; 14(11): 6488-6492. DOI: 10.1021/nl503029.
  6. Kumar SN, Naidu KCB, Banerjee P, Anil Babu T, Venkata Shiva Reddy B. A review on metamaterials for device applications. Crystals 2021; 11: 518. DOI: 10.3390/cryst11050518.
  7. Lindell IV, Sihvola AH, Tretyakov SA, Viitanen AJ. Electromagnetic waves in chiral and bi-isotropic media. London: Artech House; 1994.
  8. Lakhtakia A, Varadan VK, Varadan VV. Time-harmonic electromagnetic fields in chiral media. Berlin, Heidelberg, Boston: Springer-Verlag; 1989.
  9. Caloz C, Sihvola AH. Electromagnetic chirality, Part 1: The microscopic perspective [Electromagnetic perspectives]. IEEE Antennas Propag Mag 2020; 62(1): 58-71. DOI: 10.1109/MAP.2019.2955698.
  10. Plum E, Fedotov VA, Zheludev NI. Optical activity in extrinsically chiral metamaterial. Appl Phys Lett 2088; 93(19): 191911. DOI: 10.1063/1.3021082.
  11. Shalaev VM. Optical negative-index metamaterials. Nat Photon 2007; 1: 41-48. DOI: 10.1038/nphoton.2006.49.
  12. Smith DR, Pendry JB, Wiltshire MCK. Metamaterials and negative refractive index. Science 2004; 305: 788-792. DOI: 10.1126/science.1096796.
  13. Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 2000; 84: 4184-4187. DOI: 10.1103/PhysRevLett.84.4184.
  14. Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science 2001; 292: 77-79. DOI: 10.1126/science.1058847.
  15. Pendry J. A chiral route to negative refraction. Science 2004; 306: 1353-1355. DOI: 10.1126/science.1104467.
  16. Veselago VG. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi 1968; 10: 509. DOI: 10.1070/PU1968v010n04ABEH003699.
  17. Pendry JB, Holden AJ, Stewart WJ, Youngs I. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett 1996; 76: 4773. DOI: 10.1103/PhysRevLett.76.4773.
  18. Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science 2001; 292: 77. DOI: 0.1126/science.1058847.
  19. Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett 2000; 85: 3966. DOI: 10.1103/PhysRevLett.85.3966.
  20. Lakhtakia A, Varadan VV, Varadan VK. Field equations, Huygens’s principle, integral equations, and theorems for radiation and scattering of electromagnetic waves in isotropic chiral media. J Opt Soc Am A 1988; 5(2): 175-184. DOI: 10.1364/JOSAA.5.000175.
  21. Silverman MP. Reflection and refraction at the surface of a chiral medium: comparison of gyrotropic constitutive relations invariant or noninvariant under a duality transformation. J Opt Soc Am A 1986; 3(6): 830-837. DOI: 10.1364/JOSAA.3.000830.
  22. Tretyakov SA Electrodynamics of complex media: chiral, bi-isotropic and some bianisotropic materials [In Russian]. Radiotekhnika i elektronika 1994; 39(10): 1457-1470.
  23. Zhao R, Koschny T, Soukoulis CM. Chiral metamaterials: retrieval of the effective parameters with and without substrate. Opt Express 2010; 18(14): 14553-14567. DOI: 10.1364/OE.18.014553.
  24. Prudêncio FR, Silveirinha MG. Optical isolation of circularly polarized light with a spontaneous magnetoelectric effect. Phys Rev A 2016; 93: 043846. DOI: 10.1103/PhysRevA.93.043846.
  25. Sihvola AH. Temporal dispersion in chiral composite materials: A theoretical study. J Electromagn Waves Appl 1992; 6(7): 1177-1196.
  26. Semchenko IV, Tretyakov SA, Serdyukov AN. Research on chiral and bianisotropic media in Byelorussia and Russia in the last ten years. Prog Electromagn Res 1996; 12: 335-370. DOI: 10.2528/PIER94112800.
  27. Condon E. Theories of optical rotatory power. Rev Mod Phys 1937; 9(4): 432-457. DOI: 10.3367/UFNr.0019.193803d.0380.
  28. Moiseeva NM. The calculation of eigenvalues modes of the planar anisotropic waveguides for various angles the optical axis. Computer Optics 2013; 37(1): 13-18. DOI: 10.18287/0134-2452-2013-37-1-13-18.
  29. Zharov A, Fierro V, Celzard A. Resonant absorption in an inhomogeneous disordered metamaterial: First-principles simulation. Phys Rev A 2022; 106(1): 013504. DOI: 10.1103/PhysRevA.106.013504.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20