(48-6) 03 * << * >> * Russian * English * Content * All Issues
Transverse spin Hall effect and polarization twist ribbon at the sharp focus
V.V. Kotlyar 1,2, A.A. Kovalev 1,2, A.M. Telegin 1,2, E.S. Kozlova 1,2
1 Image Processing Systems Institute, NRC "Kurchatov Institute",
443001, Samara, Russia, Molodogvardeyskaya 151;
2 Samara National Research University,
443086, Samara, Russia, Moskovskoye Shosse 34
PDF, 1502 kB
DOI: 10.18287/2412-6179-CO-1504
Pages: 822-831.
Full text of article: Russian language.
Abstract:
In this work, using the Richards-Wolf formalism, we found explicit analytical expressions for the coordinates of the major and minor axes of the polarization ellipse centered in the focal plane for a cylindrical vector beam of integer order n. For such a beam, the major axis of the polarization ellipse lies in the focal plane, whereas the minor axis is perpendicular to the focal plane. Therefore, the polarization ellipse is perpendicular to the focal plane, with the polarization vector rotating clockwise or counterclockwise in this plane (producing 'optical wheels'). Considering that the wave vector is also perpendicular to the focal plane, the polarization ellipse and the wave vector turn out to lie in the same plane, so that at some point of time the polarization vector can coincide with the wave vector, which is not usual for transverse electromagnetic oscillations. For a cylindrical vector beam, the spin angular momentum vector lies in the focal plane. So, when going around a certain circle with the center on the optical axis, the spin vector is directed counterclockwise in some sections of the circle, and clockwise in other sections. This effect can be called the transverse (azimuthal) optical spin Hall effect, in contrast to the well-known longitudinal optical spin Hall effect at the sharp focus. The longitudinal spin Hall effect is understood as the separation in the focal plane of regions with different signs of the longitudinal projection of the spin angular momentum vector. This work shows that there is always an even number of such regions and that when going around a circle, the vector of the major axis of the polarization ellipse forms a two-sided twist surface with an even number of turns.
Keywords:
spin angular momentum, Richards–Wolf formulas, spin Hall effect, optical vortex, plane wave, polarization twisted ribbons.
Citation:
Kotlyar VV, Kovalev AA, Telegin AM, Kozlova ES. Transverse spin Hall effect and polarization twist ribbon at the sharp focus. Computer Optics 2024; 48(6): 822-831. DOI: 10.18287/2412-6179-CO-1504.
Acknowledgements:
The work was partly funded by the Russian Science Foundation under grant #23-12-00236 (Theory and Numerical Simulation) and the NRC "Kurchatov Institute" under a government project (Introduction and Conclusion).
References:
- Bauer T, Banzer P, Karimi E, Orlov S, Rubano A, Marrucci L, Santamato E, Boyd RW, Leuchs G. Observation of optical polarization Möbius strips. Science 2015;347(6225): 964-966. DOI: 10.1126/science.1260635.
- Wan C, Zhan Q. Generation of exotic optical polarization Möbius strips. Opt Express 2019; 27(8): 11516-11524. DOI: 10.1364/OE.27.011516.
- Freund I. Multitwist optical Mobius strips. Opt Lett 2010; 35(2): 148-150. DOI: 10.1364/OL.35.000148.
- Freund I. Optical Möbius strips, twisted ribbons, and the index theorem. Opt Lett 2011; 36(23): 4506-4508. DOI: 10.1364/OL.36.004506.
- Freund I. Cones, spirals, and Möbius strips, in elliptically polarized light. Opt Commun 2005; 249(1-3): 7-22. DOI: 10.1016/j.optcom.2004.12.052
- Freund I. Optical Möbius strips and twisted ribbon cloaks. Opt Lett 2014; 39(4): 727-730. DOI: 10.1364/OL.39.000727.
- Galvez EJ, Dutta I, Beach K, Zeosky JJ, Jones JA, Khajavi B. Multitwist Möbius strips and twisted ribbons in the polarization of paraxial light beams. Sci Rep 2017; 7(1): 13653. DOI: 10.1038/s41598-017-13199-1.
- Kovalev AA, Kotlyar VV. Spin Hall effect of double-index cylindrical vector beams in a tight focus. Micromachines 2023; 14(2): 494. DOI: 10.3390/mi14020494.
- Kotlyar VV, Kovalev AA, Kozlova ES, Telegin AM. Hall effect at the focus of an optical vortex with linear polarization. Micromachines 2023; 14(4): 788. DOI: 10.3390/mi14040788.
- Kotlyar VV, Kovalev AA, Telegin AM. Generalized Poincaré beams in tight focus. Photonics 2023; 10(2): 218. DOI: 10.3390/photonics10020218.
- Berry MV. Index formulae for singular lines of polarization. J Opt A 2004; 6(7): 675-678. DOI: 10.1088/1464-4258/6/7/003.
- Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc R Soc A Math Phys Eng Sci 1959; 253(1274): 358-379. DOI: 10.1098/rspa.1959.0200.
- Kotlyar VV, Nalimov AG, Stafeev SS. Exploiting the circular polarization of light to obtain a spiral energy flow at the subwavelength focus. J Opt Soc Am B 2019; 36(10): 2850-2855. DOI: 10.1364/JOSAB.36.002850.
- Barnett SM. Allen L. Orbital angular momentum and nonparaxial light beams. Opt Commun 1994; 110(5-6): 670-678. DOI: 10.1016/0030-4018(94)90269-0.
- Aiello A, Banzer P, Neugebauer M, Leuchs G. From transverse angular momentum to photonic wheels. Nature Photon 2015; 9: 789-795. DOI: 10.1038/nphoton.2015.203.
- Kotlyar VV, Stafeev SS, Kovalev AA. Reverse and toroidal flux of light fields with both phase and polarization higher-order singularities in the sharp focus area. Opt Express 2019; 27(12): 16689-16702. DOI: 10.1364/OE.27.016689.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20