(48-6) 04 * << * >> * Russian * English * Content * All Issues
Directly measuring the total orbital angular momentum in astigmatic structured beams and the loss of several degrees of freedom
A.V. Volyar 1, E.G. Abramochkin 2, M.V. Bretsko 1, Ya.E. Akimova 1
1 Physics and Technology Institute of V.I. Vernadsky Crimean Federal University,
295007, Simferopol, Republic of Crimea, Russia, Academician Vernadsky 4;
2 Lebedev Physical Institute,
443011, Samara, Russia, Novo-Sadovaya 221
PDF, 1797 kB
DOI: 10.18287/2412-6179-CO-1506
Pages: 832-840.
Full text of article: Russian language.
Abstract:
In this article, a model of the astigmatic structured beam obtained by the ABCD matrix method is shown to be simpler and more visual compared to the approach of integral transforms [Volyar AV, Abramochkin EG, Bretsko MV, Khalilov SI, Akimova YE. Control of giant orbital angular momentum bursts of structured Laguerre-Gaussian beams in a medium with general astigmatism. Computer Optics 2024; 48(1): 35-46. DOI: 10.18287/2412-6179-CO-1395]. We study in detail physical mechanisms of shaping super-high orbital angular momentum (OAM) after a cylindrical lens during general astigmatic transformations. We also theoretically substantiate and experimentally confirm a new technique for measuring a total OAM in the structured beam based on a single measurement of the crossed intensity moment as a result of computer processing of the intensity pattern. It is shown that such simplified measurements are based on the degeneracy of the off-diagonal elements W and M of the submatrices, which reduces the number of additional degrees of freedom of the structured beam from ten to seven.
Keywords:
structural light, astigmatic beams, ABCD matrices, orbital angular momentum, intensity moments.
Citation:
Volyar AV, Abramochkin EG, Bretsko MV, Akimova YE. Direct measuring the total orbital angular momentum in astigmatic structured beams and the loss of several degrees of freedom. Computer Optics 2024; 48(6): 832-840. DOI: 10.18287/2412-6179-CO-1506.
Acknowledgements:
This work was partly funded by the Russian Science Foundation under project No. 24-22-00278 (Sections “Complex amplitude of a structured Laguerre-Gaussian beam” and “Astigmatic transformation of a structured Laguerre-Gaussian beam”).
References:
- Forbes A, de Oliveira M, Dennis MR. Structured light. Nat Photonics 2021; 15: 253-262. DOI: 10.1038/s41566-021-00780-4.
- Porfirev AP, Kuchmizhak AA, Gurbatov SO, Juodkazis S, Khonina SN, Kulchin YuN. Phase singularities and optical vortices in photonics. Phys Usp 2022; 65: 789-811. DOI: 10.3367/UFNe.2021.07.039028.
- He C, Shen Y, Forbes A. Towards higher-dimensional structured light. Light Sci Appl 2022; 11: 205. DOI: 10.1038/s41377-022-00897-3.
- Khonina SN, Kotlyar VV, Soifer VA. Diffraction optical elements matched to the Gauss-Laguerre modes. Opt Spectrosc 1998; 85(4): 636-644.
- Khonina SN, Kotlyar VV, Skidanov RV, Soifer VA, Laakkonen P, Turunen J. Gauss-Laguerre modes with different indices in prescribed diffraction orders of a diffractive phase element. Opt Commun 2000; 175(4-6): 301-308. DOI: 10.1016/S0030-4018(00)00472-7.
- Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature 2001; 412: 313-316. DOI: 10.1038/35085529.
- Soskin MS, Gorshkov VN, Vasnetsov MV, Malos JT, Heckenberg NR. Topological charge and angular momentum of light beams carrying optical vortices. Phys Rev A 1997; 56: 4064-4075. DOI: 10.1103/PhysRevA.56.4064.
- Chen M, Roux FS, Olivier JC. Detection of phase singularities with a Shack-Hartmann wavefront sensor. J Opt Soc Am A 2007; 24: 1994-2002. DOI: 10.1364/JOSAA.24.001994.
- Otte E, Bobkova V, Trinschek S, Rosales-Guzmán C, Denz C. Single-shot all-digital approach for measuring the orbital angular momentum spectrum of light. APL Photonics 2022; 7(8): 086105. DOI: 10.1063/5.0086536.
- Volyar AV, Abramochkin EG, Egorov YuA, Bretsko MV, Akimova YaE. Digital sorting of Hermite-Gauss beams: mode spectra and topological charge of a perturbed Laguerre-Gauss beam. Computer Optics 2020; 44(4): 501-509. DOI: 10.18287/2412-6179-CO-747.
- Volyar AV, Bretsko MV, Akimova YaE, Egorov YuA. Shaping and processing the vortex spectra of singular beams with anomalous orbital angular momentum. Computer Optics 2019; 43(4): 517-527. DOI: 10.18287/2412-6179-2019-43-4-517-527.
- Volyar A, Abramochkin E, Akimova Ya, Bretsko M, Egorov Yu. Fast oscillations of orbital angular momentum and Shannon entropy caused by radial numbers of structured vortex beams. Appl Opt 2022; 61(21): 6398-6407. DOI: 10.1364/AO.464178.
- Alperin SN, Niederiter RD, Gopinath JT, Siements KE. Quantitative measurement of the orbital angular momentum of light with a single, stationary lens. Opt Lett 2016; 41(21): 5019-5022. DOI: 10.1364/OL.41.005019.
- Kotlyar VV, Kovalev AA, Porfirev AP. Methods for determining the orbital angular momentum of a laser beam. Computer Optics 2019; 43(1): 42-53. DOI: 10.18287/2412-6179-2019-43-1-42-53.
- Arnaud JA, Kogelnik H. Gaussian light beams with general astigmatism. Appl Opt 1969; 8: 1687-1693. DOI: 10.1364/AO.8.001687.
- Volyar AV, Abramochkin EG, Bretsko MV, Khalilov SI, Akimova YE. Control of giant orbital angular momentum bursts of structured Laguerre-Gaussian beams in a medium with general astigmatism. Computer Optics 2024; 48(1): 35-46. DOI: 10.18287/2412-6179-CO-1395.
- Volyar AV, Bretsko MV, Khalilov SI, Akimova YE. Orbital angular momentum burst control in astigmatic structured beams in ABCD-matrix transforms. Computer Optics 2024; 48(2): 171-179. DOI: 10.18287/2412-6179-CO-1411.
- Abramochkin E, Volostnikov V. Beam transformations and nontransformed beams. Opt Commun 1991; 83(1): 123-135. DOI: 10.1016/0030-4018(91)90534-K.
- Abramochkin E, Volostnikov V. Modern optics of Gaussian beams [In Russian]. Moscow: “Fizmatlit” Publishers; 2010. ISBN: 978-5-9221-1216-1.
- Nemes G, Serna J. Laser beam characterization with use of second order moments: an overview. DPSS (Diode Pumped Solid State) lasers: applications and issues 1998; MQ: MQ2. DOI: 10.1364/DLAI.1998.MQ2.
- Gerrard A, Burch JM. Introduction to matrix methods in optics. London, New York: Wiley; 1975. ISBN: 0-486-68044-4.
- Alieva T, Bastiaans MJ. Alternative representation of the linear canonical integral transform. Opt Lett 2005; 30: 3302-3304. DOI: 10.1364/OL.30.003302.
- Kotlyar VV, Kovalev AA, Porfirev AP. Determination of an optical vortex topological charge using an astigmatic transform. Computer Optics 2016; 40(6): 781-792. DOI: 10.18287/2412-6179-2016-40-6-781-792.
- Kotlyar VV, Kovalev AA. Orbital angular momentum of structurally stable laser beams. Computer Optics 2022; 46(4): 517-521. DOI: 10.18287/2412-6179-CO-1108.
- Luneburg RK. Mathematical theory of optics. Berkeley: University of California Press; 1966. ISBN: 978-0520007802.
- Bekshaev AY, Soskin MS, Vasnetsov MV. Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams. J Opt Soc Am A 2003; 20: 1635-1643. DOI: 10.1364/JOSAA.20.001635.
- Abramochkin EG, Volostnikov VG. Generalized Hermite-Laguerre-Gauss beams. Phys Wave Phenom 2010; 18: 14-22. DOI: 10.3103/S1541308X10010036.
- Nemes G, Siegman AE. Measurement of all ten second-order moments of an astigmatic beam by the use of rotating simple astigmatic (anamorphic) optics. J Opt Soc Am A 1994; 11: 2257-2264. DOI: 10.1364/JOSAA.11.002257.
- ISO 11146-2:2021. Lasers and laser-related equipment – Test methods for laser beam widths, divergence angles and beam propagation ratios – Part 2: General astigmatic beams. Geneva, Switzerland: ISO; 2021.
- Nemes G. Intrinsic and geometrical beam classification, and the beam identification after measurement. Proc SPIE 2003; 4932: 624-635. DOI: 10.1117/12.472380.
- Kotlyar VV, Kovalev AA, Porfirev AP. Astigmatic laser beams with a large orbital angular momentum. Opt Express 2018, 26(1): 141-156. DOI: 10.1364/OE.26.000141.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20