(48-6) 07 * << * >> * Russian * English * Content * All Issues
  
Vector analysis of the interference of paired coplanar beams with linear or circular polarization
 S.N. Khonina 1,2, A.V. Ustinov 1, A.P. Porfirev 1,2
 1 Image Processing Systems Institute, NRC “Kurchatov Institute”,
     443001, Samara, Russia, Molodogvardeyskaya 151;
     2 Samara National Research University,
  443086, Samara, Russia, Moskovskoye Shosse 34
  PDF, 2295 kB
DOI: 10.18287/2412-6179-CO-1510
Pages: 858-867.
Full text of article: Russian language.
 
Abstract:
In this work, using a  focusing formalism based on Richards–Wolf theory, the multi-beam interference  of two and four light beams with linear or circular polarization with different  orthogonality and orientation of the polarization vector is numerically  studied. The possibility of forming light fields with a periodic polarization  structure is demonstrated. In particular, it is established that when focusing  four beams equidistant from the optical axis with changing linear polarization  orientation, which mimics a change in the polarization vector of a single  radially or azimuthally polarized beam, periodic light fields are formed. The  polarization distribution of such fields is actually a set of polarization  singularities corresponding to radially and azimuthally polarized beams. The  proposed approach does not require the manufacture of complex subwavelength  gratings, grating-based elements, or modal superposition of light fields with  the aid of diffractive optical elements or spatial light modulators. The  generated light fields make it possible to significantly speed up the process  of laser processing of light-sensitive thin-film materials aimed at creating arrays  of various ordered nano- and microstructures.
Keywords:
polarization, multi-beam  interference, circular polarization, linear polarization, Richards–Wolf  formulas.
Citation:
  Khonina SN, Ustinov AV, Porfirev AP. Vector analysis of the interference of paired coplanar beams with linear or circular polarization. Computer Optics 2024; 48(6): 858-867. DOI: 10.18287/2412-6179-CO-1510.
Acknowledgements:
  This work was partly funded by the Russian Science Foundation under project No. 22-79-10007 (Section "Numerical results") and within the state project of the National Research Center “Kurchatov Institute” (Section "Theoretical background").
References:
  - Forbes A. Structured  light from lasers. Laser Photon Rev 2019; 13(11): 1900140. DOI:  10.1002/lpor.201900140.
 
  - Fu P, Ni PN, Wu B, Pei  XZ, Wang QH, Chen PP, Xu C, Kan Q, Chu WG, Xie YY. Metasurface enabled on-chip  generation and manipulation of vector beams from vertical cavity surface-emitting  lasers. Adv Mater 2023; 35(12): 2204286. DOI: 10.1002/adma.202204286.
 
  - Skoulas  E, Manousaki A, Fotakis C, Stratakis E. Biomimetic surface structuring using  cylindrical vector femtosecond laser beams. Sci Rep 2017; 7(1): 45114. DOI:  10.1038/srep45114.
     
  - Rosales-Guzmán  C, Ndagano B, Forbes A. A review of complex vector light fields and their  applications. J Opt 2018; 20(12): 123001. DOI: 10.1088/2040-8986/aaeb7d.
     
  - Stafeev  SS, Kotlyar VV, Nalimov AG, Kotlyar MV, O’Faolain L. Subwavelength gratings for  polarization conversion and focusing of laser light. Photonics Nanostruct 2017;  27: 32-41. DOI: 10.1016/j.photonics.2017.09.001.
     
  - Wen  D, Crozier KB. Metasurfaces 2.0: Laser-integrated and with vector field  control. APL Photonics 2021; 6(8): 080902. DOI: 10.1063/5.0057904.
     
  - Khonina  SN, Degtyarev SA, Ustinov AV, Porfirev AP. Metalenses for the generation of  vector Lissajous beams with a complex Poynting vector density. Opt Express  2021; 29(12): 18634-18645. DOI: 10.1364/OE.428453.
     
  - Maurer  C, Jesacher A, Fürhapter S, Bernet S, Ritsch-Marte M. Tailoring of arbitrary  optical vector beams. New J Phys 2007; 9: 78. DOI: 10.1088/1367-2630/9/3/078.
     
  - Khonina  SN, Porfirev AP. Harnessing of inhomogeneously polarized Hermite–Gaussian  vector beams to manage the 3D spin angular momentum density distribution. Nanophotonics  2021; 11(4): 697-712. DOI: 10.1515/nanoph-2021-0418.
     
  - Khonina  SN, Karpeev SV. Grating-based optical scheme for the universal generation of  inhomogeneously polarized laser beams. Appl Opt 2010; 49(10): 1734-1738. DOI:  10.1364/AO.49.001734.
     
  - Khonina  SN, Karpeev SV, Porfirev AP. Sector sandwich structure: an easy-to-manufacture  way towards complex vector beam generation. Opt Express 2020; 28(19):  27628-27643. DOI: 10.1364/OE.398435.
     
  - Uesugi  Y, Miwa T, Kadoguchi N, Kozawa Y, Sato S. Multi-beam ultrafast laser processing  of free-standing nanofilms. Appl Phys A 2023; 129(2): 101. DOI:  10.1007/s00339-022-06361-8.
     
  - Yang  Y, Ren YX, Chen M, Arita Y, Rosales-Guzmán C. Optical trapping with structured  light: a review. Adv Photonics 2021; 3(3): 034001. DOI:  10.1117/1.AP.3.3.034001.
     
  - Kim  DY, Tripathy SK, Li L, Kumar J. Laser-induced holographic  surface relief gratings on nonlinear optical polymer films. Appl Phys Lett  1995; 66: 1166-1168. DOI: 10.1063/1.113845.
     
  - Yu  F, Li P, Shen H, Mathur S, Lehr C-M, Bakowsky U, Mücklich F. Laser interference  lithography as a new and efficient technique for micropatterning of biopolymer  surface. Biomaterials 2005; 26(15): 2307-2312. DOI:  10.1016/j.biomaterials.2004.07.021.
     
  - Lai  ND, Liang WP, Lin JH, Hsu CC, Lin CH. Fabrication of two- and three-dimensional  periodic structures by multi-exposure of two-beam interference technique. Opt  Express 2005; 13(23): 9605-9611. DOI: 10.1364/OPEX.13.009605.
     
  - Xia  D, Ku Z, Lee SC, Brueck SRJ. Nanostructures and functional materials fabricated  by interferometric lithography. Adv Mater 2011; 23(2): 147-179. DOI:  10.1002/adma.201001856.
     
  - Vala  M, Homola J. Multiple beam interference lithography: A tool for rapid  fabrication of plasmonic arrays of arbitrary shaped nanomotifs. Opt Express  2016; 24(14): 15656-15665. DOI: 10.1364/OE.24.015656.
     
  - Ivliev  NA, Podlipnov VV, Khonina SN, Loshmanskii KS, Prisakar AM, Abashkin VG,  Meshalkin AYu, Akimova EA. Single- and double-beam optical formation of  relief-phase diffraction microstructures in carbazole-containing azopolymer  films. Opt Spectrosc 2021; 129(4): 400-405. DOI: 10.1134/S0030400X21040111.
     
  - Porfirev  AP, Khonina SN, Meshalkin A, Ivliev NA, Achimova E, Abashkin V, Prisacar A,  Podlipnov VV. Two-step maskless fabrication of compound fork-shaped gratings in  nanomultilayer structures based on chalcogenide glasses, Opt Lett 2021; 46(13):  3037-3040. DOI: 10.1364/OL.427335.
     
  - Gorkhali  SP, Cloutier SG, Crawford GP, Pelcovits RA. Stable polarization gratings  recorded in azo-dye-doped liquid crystals. Appl Phys Lett 2006; 88(25): 251113.  DOI: 10.1063/1.2214176.
     
  - Wang  D, Wang Z, Zhang Z, et al. Effects of polarization on four-beam laser  interference lithography. Appl Phys Lett 2016; 102(8): 081903. DOI:  10.1063/1.4793752.
     
  - Achimova  E, Stronski A, Abaskin V, Meshalkin A, Paiuk A, Prisacar A, Oleksenko P, Triduh  G. Direct surface relief formation on As2S3–Se nanomultilayers in dependence on  polarization states of recording beams. Opt Mater 2015; 47: 566-572. DOI:  10.1016/j.optmat.2015.06.044.
     
  - Meshalkin  A, Losmanschii C, Prisacar A, Achimova E, Abashkin V, Pogrebnoi S, Macaev F.  Carbazole-based azopolymers as media for polarization holographic recording.  Adv Phys Res 2019; 1: 86-98.
     
  - Porfirev  AP, Khonina SN, Ivliev NA, Fomchenkov SA, Porfirev DP, Karpeev SV.  Polarization-sensitive patterning of azopolymer thin films using multiple  structured laser beams. Sensors 2023; 23: 112. DOI: 10.3390/s23010112.
     
  - Porfirev  AP, Khonina SN, Ivliev NA, Porfirev DP, Kazanskiy NL. Stacked polarizing  elements for controlling parameters of surface relief gratings written in  photosensitive materials. Sensors 2024; 24: 1166. DOI: 10.3390/s24041166.
     
  - Stay  JL, Gaylord TK. Three-beam-interference lithography: contrast and  crystallography. Appl Opt 2008; 47(18): 3221-3230. DOI: 10.1364/AO.47.003221.
     
  - He J, Fang X,  Lin Y, Zhang X. Polarization control in flexible interference lithography for  nano-patterning of different photonic structures with optimized contrast. Opt  Express 2015; 23(9): 11518-11525. DOI: 10.1364/OE.23.011518.
     
  - Miller  DB, Jones A, McLeod RR. Contrast analysis in two-beam laser interference  lithography. Appl Opt 2020; 59(18): 5399-5407. DOI: 10.1364/AO.393741.
     
  - Peng  F, Du J, Du J, Wang S, Yan W. Contrast analysis of polarization in three-beam  interference lithography. Appl Sci 2021; 11: 4789. DOI: 10.3390/app11114789.
     
  - Sekkat  Z, Kawata S. Laser nanofabrication in photoresists and azopolymers. Laser  Photon Rev 2014; 8(1): 1-26. DOI: 10.1002/lpor.201200081.
     
  - Meier  M, Romano V, Feurer T. Material processing with pulsed radially and azimuthally  polarized laser radiation. Appl Phys A 2007; 86: 329-334. DOI:  10.1007/s00339-006-3784-9.
     
  - Danilov  PA, Saraeva IN, Kudryashov SI, Porfirev AP, Kuchmizhak AA, Zhizhchenko AYu,  Rudenko AA, Umanskaya SF, Zayarny DA, Ionin AA, Khonina SN. Polarization-selective  excitation of dye luminescence on a gold film by structured ultrashort laser  pulses. JETP Lett 2018; 107(1): 15-18. DOI: 10.1134/S0021364018010034.
     
  - Zhai  Y, Cao L, Liu Y, Tan X. A review of polarization-sensitive materials for  polarization holography. Materials 2020; 13(23): 5562. DOI: 10.3390/ma13235562.
     
  - Porfirev  A, Khonina S, Ivliev N, Meshalkin A, Achimova E, Forbes A. Writing and reading  with the longitudinal component of light using carbazole-containing azopolymer  thin films. Sci Rep 2022; 12: 3477. DOI: 10.1038/s41598-022-07440-9.
     
  - Porfirev  AP, Khonina SN, Ivliev NA, Porfirev DP. Laser processing of chalcogenide  glasses using laser fields with a spatially varying polarization distribution.  Opt Laser Technol 2023; 167: 109716. DOI: 10.1016/j.optlastec.2023.109716.
     
  - Richards  B, Wolf E. Electromagnetic diffraction in optical systems, II. Structure of the  image field in an aplanatic system. Proc R Soc Lond Ser A Math Phys Sci 1959;  253: 358-379. DOI: 10.1098/rspa.1959.0200.
     
  - Khonina  SN. Vortex beams with high-order cylindrical polarization: features of focal  distributions. Appl Phys B 2019; 125: 100. DOI: 10.1007/s00340-019-7212-1.
     
  - Meshalkin  A, Robu S, Achimova E, Prisacar A, Shepel D, Abaskin V, Triduh G. Direct  photoinduced surface relief formation in carbazole-based azopolymer using  polarization holographic recording. J Optoelectron Adv M 2016; 18: 763-768.
     
  - Ivliev  NA, Khonina SN, Podlipnov VV, Karpeev SV.    Holographic writing of forked diffraction gratings on the surface of a  chalcogenide glass semiconductor. Photonics 2023; 10(2): 125. DOI:  10.3390/photonics10020125.
   
  - Kulikovska  O, Gharagozloo-Hubmann K, Stumpe J, Huey BD, Bliznyuk VN. Formation of surface  relief grating in polymers with pendant azobenzene chromophores as studied by  AFM/UFM. Nanotechnology 2012; 23: 485309. DOI: 10.1088/0957-4484/23/48/485309. 
 
  - Zhai Y, Cao L, Liu Y, Tan X. A review of  polarization-sensitive materials for polarization holography. Materials 2020;  13: 5562. DOI: 10.3390/ma13235562.
 
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20