(48-6) 10 * << * >> * Russian * English * Content * All Issues

Mathematical modeling of processes in quantum computer elements based on methods of quantum theory to improve their efficiency
A.A. Biryukov 1, M.A. Shleenkov 2

Samara State Transport University,
443066, Samara, Russia, Svoboda str. 2V;
Samara National Research University,
443086, Samara, Russia, Moskovskoe shosse 34

 PDF, 705 kB

DOI: 10.18287/2412-6179-CO-1489

Pages: 889-893.

Full text of article: English language.

Abstract:
The paper studies entangled states of two qubits interacting with each other and with an electromagnetic field. The state of the qubits is determined by a statistical density matrix. The degree of entanglement of the state is characterized by the Peres-Gorodeckii (PG) parameter. The statistical density matrix and its evolution are determined in the energy representation within the framework of the path integral formalism. The obtained equations determine the dependence of the PG parameter on the parameters of qubit dipole-dipole interaction and the acting electromagnetic field. The results of numerical calculations are presented in graphs for the PG parameter. It is shown that it is possible to choose parameters corresponding to qubit states with a high degree of entanglement (0.99).

Keywords:
qubits, quantum entanglement, Peres-Gorodeckii parameter, path integration.

Citation:
Biryukov AA, Shleenkov MA. Mathematical modeling of processes in quantum computer elements based on methods of quantum theory to improve their efficiency. Computer Optics 2024; 48(6): 889-893. DOI: 10.18287/2412-6179-CO-1489.

References:

  1. Feynman RP. Simulating physics with computers. Int J Theor Phys 1982; 21: 467-488. DOI: 10.1007/BF02650179.
  2. Klobus W, Grudka A, Baumgartner A, Tomaszewski D, Schönenberger C, Martinek J. Entanglement witnessing and quantum cryptography with nonideal ferromagnetic detectors. Phys Rev B 2014; 89: 125404. DOI: 10.1103/PhysRevB.89.125404.
  3. Torres JM, Bernad JZ, Alber G. Quantum teleportation and entanglement swapping of matter qubits with coherent multiphoton states. Phys Rev A 2014; 90: 012304. DOI: 10.1103/PhysRevA.90.012304.
  4. Horodecki R, Horodecki P, Horodecki M, Horodecki K. Quantum entanglement. Rev Mod Phys 2009; 81: 865-942. DOI: 10.1103/RevModPhys.81.865.
  5. Peres A. Separability criterion for density matrices. Phys Rev Lett 1996; 77: 1413-1415. DOI: 10.1103/PhysRevLett.77.1413.
  6. Vidal G, Werner RF. Computable measure of entanglement. Phys Rev A 2002; 65: 032314. DOI: 10.1103/PhysRevA.65.032314.
  7. Bashkirov EK, Sochkova EYu. Entanglement in two-atom model with degenerate Raman transitions. Journal of Samara State Technical University, Ser Physical and Mathematical Sciences 2011; 2: 135-141. DOI: 10.14498/vsgtu934.
  8. Cirac JI, Zoller P. Quantum computations with cold trapped ions. Phys Rev Lett 1995; 74: 4091-4094. DOI: 10.1103/PhysRevLett.74.4091.
  9. Cakir O, Klyachko AA, Shumovsky AS. Steady-state entanglement of two atoms created by classical driving field. Phys Rev A 2005; 71: 034303. DOI: 10.1103/PhysRevA.71.034303.
  10. Al-Qasimi A, James DFV. Sudden death of entanglement at finite temperature. Phys Rev A 2008; 77: 012117. DOI: 10.1103/PhysRevA.77.012117.
  11. Bashkirov EK, Mastyugin MS. Entanglement of two flux qubits interacting with thermal field. Proc SPIE 2014; 9031: 903110. DOI: 10.1117/12.2051291.
  12. Bashkirov EK, Stupatskaya MP. The entanglement of two dipole-dipole coupled atoms induced by nondegenerate two-mode thermal noise. Laser Phys 209; 19: 525-530. DOI: 10.1134/S1054660X09030281.
  13. Gorokhov AV. Chaos and entanglement in atomic systems interacting with photons. Proc SPIE 2013; 8699: 86990Y. DOI: 10.1117/12.2019110.
  14. Soltani M, Ezatabadipour H, Jalali J, Darabi P, Azizi E, Rashedi G. Control of entanglement between two dissipative non-interacting qubits in a common heat bath by a laser field. Eur Phys J D 2013; 67: 256-264. DOI: 10.1140/epjd/e2013-40350-8.
  15. Abdel-Khalek S, Berrada K, Khalil EM, Obada A-SF, Reda E, Eleuch H. Quantumness measures for a system of two qubits interacting with a field in the presence of the time-dependent interaction and kerr medium. Entropy 2021; 23: 635. DOI: 10.3390/e23050635.
  16. Bashkirov EK. Entanglement of two dipole-coupled qubits induced by a detuned thermal field. J Phys: Conf Ser 2018; 1096: 012063. DOI: 10.188/1742-6596/1096/1/012063.
  17. Bratus E, Pastur L. The dynamics of quantum correlations of two qubits in a common environment. J Math Phys Anal Geom 2020; 16(3): 228-262. DOI: 10.15407/mag16.03.228.
  18. Holland CM, Lu Y, Cheuk LW. On-demand entanglement of molecules in a reconfigurable optical tweezer array. Science 2023; 382(6675): 1143-1147. DOI: 10.1126/science.adf4272.
  19. Ayoade O, Rivas P, Orduz J. Artificial intelligence computing at the quantum level. Data 2022; 7(3): 28. DOI: 10.3390/data7030028.
  20. Dirac PAM. Principles of quantum mechanics. 4th ed. Oxford University Press; 1982. ISBN: 978-0198512080.
  21. Biryukov AA, Degtyareva YV, Shleenkov MA. Calculating the probabilities of quantum transitions in atoms and molecules numerically through functional integration. Bulletin of the Russian Academy of Sciences: Physics 2018; 82(12): 1565-1569. DOI: 10.3103/S1062873818120055.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20