(49-1) 01 * << * >> * Russian * English * Content * All Issues

Skyrmion number for a generalized vector Poincaré beam
V.V. Kotlyar 1,2, A.A. Kovalev 1,2, A.M. Telegin 2

Image Processing Systems Institute, NRC "Kurchatov Institute",
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University,
443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1056 kB

DOI: 10.18287/2412-6179-CO-1507

Pages: 5-12.

Full text of article: Russian language.

Abstract:
We investigate two initial vector Poincaré-type light fields that can be treated as optical skyrmions – topological quasiparticles. For such fields, explicit expressions are obtained for the components of a 3D-vector skyrmionic field in the initial plane as well as for the skyrmion numbers, proportional to the topological charges of the optical vortices constituting the Poincaré beams. A new constructive formula is derived for effective calculation of the skyrmion number via the components of the normalized Stokes vector, rather than via the components of the vector skyrmion field. The skyrmion numbers computed by the well known and new formulae coincide. We also show that each component of the 3D-vector skyrmion field has a number equal to one third of the full skyrmion number. The numerical simulation results are consistent with the theoretical conclusions.

Keywords:
quasiparticle, optical skyrmion, Poincaré beam, optical vortex, Stokes vector, skyrmion number.

Citation:
Kotlyar VV, Kovalev AA, Telegin AM. Skyrmion number for a generalized vector Poincaré beam. Computer Optics 2025; 49(1): 5-12. DOI: 10.18287/2412-6179-CO-1507.

Acknowledgements:
This work was partly funded by the Russian Science Foundation under project No. 23-12-00236 (Theory and Numerical simulation) and within a government project of the NRC "Kurchatov Institute" (Introduction and Conclusion).

References:

  1. Skyrme THR. A non-linear field theory. Proc R Soc Lond A 1961; 260(1300): 127-138. DOI: 10.1098/rspa.1961.0018.
  2. Gao S, Speirits FC, Castellucci F, Franke-Arnold S, Barnett SM, Götte JB. Erratum: Paraxial skyrmionic beams [Phys. Rev. A 102, 053513 (2020)]. Phys Rev A 2021; 104(4): 049901. DOI: 10.1103/PhysRevA.104.049901.
  3. Shen Y, Martínez EC, Rosales-Guzmán C. Generation of optical skyrmions with tunable topological textures. ACS Photonics 2022; 9(1): 296-303. DOI: 10.1021/acsphotonics.1c01703.
  4. Cisowski C, Ross C, Franke-Arnold S. Building paraxial optical skyrmions using rational maps. Adv Photonics Res 2023; 4(4): 2200350. DOI: 10.1002/adpr.202200350.
  5. Gutiérrez-Cuevas R, Pisanty E. Optical polarization skyrmionic fields in free space. J Opt 2021; 23(2): 024004. DOI: 10.1088/2040-8986/abe8b2.
  6. Shen Y, Zhang Q, Shi P, Du L, Yuan X, Zayats AV. Optical skyrmions and other topological quasiparticles of light. Nat Photon 2024; 18(1): 15-25. DOI: 10.1038/s41566-023-01325-7.
  7. Cao S, Du L, Shi P, Yuan X. Topological state transitions of skyrmionic beams under focusing configurations. Opt Express 2024; 32(3): 4167-4179. DOI: 10.1364/OE.514440.
  8. Gao S, Speirits FC, Castellucci F, Franke-Arnold S, Barnett SM, Götte JB. Paraxial skyrmionic beams. Phys Rev A 2020; 102(5): 053513. DOI: 10.1103/PhysRevA.102.053513.
  9. McWilliam A, Cisowski CM, Ye Z, Speirits FC, Götte JB, Barnett SM, Franke-Arnold S. Topological approach of characterizing optical skyrmions and multi-skyrmions. Laser Photonics Rev 2023; 17(9): 2300155. DOI: 10.1002/lpor.202300155.
  10. Berry MV. Optical vortices evolving from helicoidal integer and fractional phase steps. J Opt A: Pure Appl Opt 2004; 6(2): 259. DOI: 10.1088/1464-4258/6/2/018.
  11. Beckley AM, Brown TG, Alonso MA. Full Poincaré beams. Opt Express 2010; 18(10): 10777-10785. DOI: 10.1364/OE.18.010777.
  12. Chen S, Zhou X, Liu Y, Ling X, Luo H, Wen S. Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere. Opt Lett 2014; 39(18): 5274-5276. DOI: 10.1364/OL.39.005274.
  13. Kotlyar VV, Kovalev AA, Stafeev SS, Zaitsev VD. Index of the polarization singularity of Poincare beams. Bull Russ Acad Sci Phys 2022; 86(10): 1158-1163. DOI: 10.3103/S1062873822100112.
  14. Teng H, Zhong J, Chen J, Lei X, Zhan Q. Physical conversion and superposition of optical skyrmion topologies. Photonics Res 2023; 11(12): 2042-2053. DOI: 10.1364/PRJ.499485.
  15. Richards B, Wolf E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc R Soc Lond A 1959; 253(1274): 358-379. DOI: 10.1098/rspa.1959.0200.
  16. Barnett SM, Allen L. Orbital angular momentum and nonparaxial light beams. Opt Commun 1994; 110(5-6): 670-678. DOI: 10.1016/0030-4018(94)90269-0.
  17. Kovalev AA, Kotlyar VV. Spin Hall effect of double-index cylindrical vector beams in a tight focus. Micromachines 2023; 14(2): 494. DOI: 10.3390/mi14020494.
  18. Freund I. Poincaré vortices. Opt Lett 2001; 26(24): 1996-1998. DOI: 10.1364/OL.26.001996.
  19. Freund I. Polarization singularity indices in Gaussian laser beams. Opt Commun 2002; 201(4-6): 251-270. DOI: 10.1016/S0030-4018(01)01725-4.
  20. Kotlyar VV, Kovalev AA, Zaitsev VD. Topological charge of light fields with a polarization singularity. Photonics 2022; 9(5): 298. DOI: 10.3390/photonics9050298.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20