(49-1) 01 * << * >> * Russian * English * Content * All Issues
  
Skyrmion number for a generalized vector Poincaré beam
 V.V. Kotlyar 1,2, A.A. Kovalev 1,2, A.M. Telegin 2
 1 Image Processing Systems Institute, NRC "Kurchatov Institute",
  443001, Samara, Russia, Molodogvardeyskaya 151;
     2 Samara National Research University,
  443086, Samara, Russia, Moskovskoye Shosse 34
 PDF, 1056 kB
  PDF, 1056 kB
DOI: 10.18287/2412-6179-CO-1507
Pages: 5-12.
Full text of article: Russian language.
 
Abstract:
We investigate two initial vector Poincaré-type  light fields that can be treated as optical skyrmions – topological  quasiparticles. For such fields, explicit expressions are obtained for the components  of a 3D-vector skyrmionic field in the initial plane as well as for the  skyrmion numbers, proportional to the topological charges of the optical  vortices constituting the Poincaré beams. A new constructive formula is derived  for effective calculation of the skyrmion number via the components of the  normalized Stokes vector, rather than via the components of the vector skyrmion  field. The skyrmion numbers computed by the well known and new formulae  coincide. We also show that each component of the 3D-vector skyrmion field has  a number equal to one third of the full skyrmion number. The numerical  simulation results are consistent with the theoretical conclusions.
Keywords:
quasiparticle, optical  skyrmion, Poincaré beam, optical  vortex, Stokes vector, skyrmion number.
Citation:
  Kotlyar VV, Kovalev AA, Telegin AM. Skyrmion number for a generalized vector Poincaré beam. Computer Optics 2025; 49(1): 5-12. DOI: 10.18287/2412-6179-CO-1507.
Acknowledgements:
  This work  was partly funded by the Russian Science Foundation under project  No. 23-12-00236 (Theory and Numerical simulation) and within a government project of the NRC "Kurchatov  Institute" (Introduction and  Conclusion).
References:
  - Skyrme THR. A non-linear  field theory. Proc R Soc Lond A 1961; 260(1300): 127-138. DOI:  10.1098/rspa.1961.0018.
 
- Gao S, Speirits FC, Castellucci F, Franke-Arnold S,  Barnett SM, Götte JB. Erratum: Paraxial skyrmionic beams [Phys. Rev. A 102,  053513 (2020)]. Phys Rev A 2021; 104(4): 049901. DOI:  10.1103/PhysRevA.104.049901.
 
- Shen  Y, Martínez EC, Rosales-Guzmán C. Generation of optical skyrmions with tunable  topological textures. ACS Photonics 2022; 9(1): 296-303. DOI:  10.1021/acsphotonics.1c01703.
 
- Cisowski  C, Ross C, Franke-Arnold S. Building paraxial optical skyrmions using rational  maps. Adv Photonics Res 2023; 4(4): 2200350. DOI: 10.1002/adpr.202200350.
 
- Gutiérrez-Cuevas  R, Pisanty E. Optical polarization skyrmionic fields in free space. J Opt 2021;  23(2): 024004. DOI: 10.1088/2040-8986/abe8b2.
 
- Shen  Y, Zhang Q, Shi P, Du L, Yuan X, Zayats AV. Optical skyrmions and other topological  quasiparticles of light. Nat Photon 2024; 18(1): 15-25. DOI:  10.1038/s41566-023-01325-7.
 
- Cao S, Du L,  Shi P, Yuan X. Topological state transitions of skyrmionic beams under focusing  configurations. Opt Express 2024; 32(3): 4167-4179. DOI: 10.1364/OE.514440.
 
- Gao S,  Speirits FC, Castellucci F, Franke-Arnold S, Barnett SM, Götte JB. Paraxial  skyrmionic beams. Phys Rev A 2020; 102(5): 053513. DOI:  10.1103/PhysRevA.102.053513.
 
- McWilliam  A, Cisowski CM, Ye Z, Speirits FC, Götte JB, Barnett SM, Franke-Arnold S. Topological  approach of characterizing optical skyrmions and multi-skyrmions. Laser Photonics Rev 2023; 17(9): 2300155. DOI:  10.1002/lpor.202300155.
 
- Berry  MV. Optical vortices evolving from helicoidal integer and fractional phase  steps. J Opt A: Pure Appl Opt 2004; 6(2): 259. DOI: 10.1088/1464-4258/6/2/018.
 
- Beckley  AM, Brown TG, Alonso MA. Full Poincaré beams. Opt Express 2010; 18(10):  10777-10785. DOI: 10.1364/OE.18.010777.
 
- Chen  S, Zhou X, Liu Y, Ling X, Luo H, Wen S. Generation of arbitrary cylindrical  vector beams on the higher order Poincaré sphere. Opt Lett 2014; 39(18):  5274-5276. DOI: 10.1364/OL.39.005274.
 
- Kotlyar  VV, Kovalev AA, Stafeev SS, Zaitsev VD. Index of the polarization singularity  of Poincare beams. Bull Russ Acad Sci Phys 2022; 86(10): 1158-1163. DOI:  10.3103/S1062873822100112.
 
- Teng  H, Zhong J, Chen J, Lei X, Zhan Q. Physical conversion and superposition of  optical skyrmion topologies. Photonics Res 2023; 11(12): 2042-2053. DOI: 10.1364/PRJ.499485.
 
- Richards  B, Wolf E. Electromagnetic diffraction in optical systems, II. Structure of the  image field in an aplanatic system. Proc R Soc Lond A 1959; 253(1274): 358-379.  DOI: 10.1098/rspa.1959.0200.
 
- Barnett  SM, Allen L. Orbital angular momentum and nonparaxial light beams. Opt Commun  1994; 110(5-6): 670-678. DOI: 10.1016/0030-4018(94)90269-0.
 
- Kovalev  AA, Kotlyar VV. Spin Hall effect of double-index cylindrical vector beams in a  tight focus. Micromachines 2023; 14(2): 494. DOI: 10.3390/mi14020494.
 
- Freund  I. Poincaré vortices. Opt Lett 2001; 26(24): 1996-1998. DOI:  10.1364/OL.26.001996.
 
- Freund  I. Polarization singularity indices in Gaussian laser beams. Opt Commun 2002;  201(4-6): 251-270. DOI: 10.1016/S0030-4018(01)01725-4. 
- Kotlyar VV, Kovalev AA, Zaitsev VD. Topological charge of light fields with  a polarization singularity. Photonics 2022; 9(5): 298. DOI: 10.3390/photonics9050298.
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20