(49-1) 02 * << * >> * Russian * English * Content * All Issues

Six-wave radiation converter based on resonant nonlinearity in a parabolic waveguide
V.V. Ivakhnik 1, D.R. Kapizov 1, V.I. Nikonov 1

Samara National Research University,
443086, Russia, Samara, Moskovskoe Shosse, 34

 PDF, 969 kB

DOI: 10.18287/2412-6179-CO-1540

Pages: 13-20.

Full text of article: Russian language.

Abstract:
The quality of wavefront reversal during six-wave mixing in a two-dimensional waveguide with resonant nonlinearity and the refractive index varying by a parabolic law is analyzed using a point spread function method. Assuming that one of the pump waves excites the zero mode of the waveguide and the distribution of the amplitude of the other pump wave on the edge of the waveguide changes by the Gaussian law, it is shown that at a low intensity of the single-mode pump wave, reducing the width of the Gaussian pump wave either leads to an improvement of or has little effect on the quality of wavefront reversal. At a high intensity of the single-mode pump wave, reducing the width of the Gaussian pump wave deteriorates the quality of wavefront reversal. We determine the range of changes in the width of the Gaussian pump wave in which the greatest change in the amplitude of the wave with a reversed wavefront is observed. It is shown that there is a threshold value for the width of the Gaussian pump wave at which a change in the intensity of the single-mode pump wave does not affect the quality of wavefront reversal.

Keywords:
six-wave radiation converter, wavefront reversal, resonant nonlinearity.

Citation:
Ivakhnik VV, Kapizov DR, Nikonov VI. Six-wave radiation converter based on resonant nonlinearity in a parabolic waveguide. Computer Optics 2025; 49(1): 13-20. DOI: 10.18287/2412-6179-CO-1540.

References:

  1. Blouin A, Denariez-Roberge MM. Theory and experiment of degenerate six-wave mixing in both isotropic and anisotropic saturable absorbers. IEEE J Quantum Electron 1993; 29(1): 227-235. DOI: 10.1109/3.199263.
  2. Astinov V, Kubarych KJ, Milne CJ, Miller RJD. Diffractive optics implementation of six-wave mixing. Opt Lett 2000; 25(11): 853-855. DOI: 10.1364/OL.25.000853.
  3. Ormachea O. Comparative analysis of multi-wave mixing and measurements of the higher-order nonlinearities in resonant media. Opt Commun 2006; 268(2): 317-322. DOI: 10.1016/j.optcom.2006.07.028.
  4. Saleh MA, Banerjee PP, Carns J, Cook G, Evans DR. Stimulated photorefractive backscatter leading to six-wave mixing and phase conjugation in iron-doped lithium niobate. Appl Opt 2007; 46(24): 6151-6160. DOI: 10.1364/ao.46.006151.
  5. Turitsyn SK, Bednyakova AE, Fedoruk MP, Paperny SB, Clements WRL. Inverse four-wave mixing and self-parametric amplification in optical fibre. Nat Photonics 2015; 9(9): 608-614. DOI: 10.1038/nphoton.2015.150.
  6. Weng Y, He X, Wang J, Pan Z. All-optical ultrafast wavelength and mode converter based on intermodal four-wave mixing in few-mode fibers. Opt Commun 2015; 348: 7-12. DOI: 10.1016/j.optcom.2015.03.018.
  7. Nazemosadat E, Pourbeyram H, Mafi A. Phase matching for spontaneous frequency conversion via four-wave mixing in graded-index multimode optical fibers. J Opt Soc Am B 2016; 33(2): 144-150. DOI: 10. 1364/JOSAB.33.000144.
  8. Anjum OF, Guasoni M, Horak P, Jung Y, Petropoulos P, Richardson DJ, Parmigiani F. Polarization-insensitive four-wave-mixing-based wavelength conversion in few-mode optical fibers. J Lightw Technol 2018; 36(17): 3678-3683. DOI: 10.1109/JLT.2018.2834148.
  9. Zhou H, Liao M, Huang S-W, Zhou L, Qiu K, Wong CW. Six-wave mixing induced by free-carrier plasma in silicon nanowire waveguides. Laser Photonics Rev 2016; 10(6): 1054-1061. DOI: 10.1002/lpor.201600124.
  10. Zeldovich BIa, Pilipetskii NF, Shkunov VV. Wavefront reversal [In Russian]. Moscow: "Nauka" Publisher; 1985.
  11. Voronin ES, Petnikova VM, Shuvalov VV. Use of degenerate parametric processes for wavefront correction (review). Sov J Quantum Electron 1981; 11(5): 551-561. DOI: 10.1070/QE1981v011n05ABEH006899.
  12. Yariv A, AuYeung J, Fekete D, Pepper DM. Image phase compensation and real-time holography by four-wave mixing in optical fibers. Appl Phys Lett 1978; 32(10): 635-637. DOI: 10.1063/1.89876.
  13. Ivahnik VV, Nikonov VI, Harskaja TG. Four-wave conversion of radiation by thermal nonlinearity in a fiber with a parabolic profile [In Russian]. Izvestija Vuzov. Priborostroenie 2006; 49(8): 54-60.
  14. Ivahnik VV, Kapizov DR, Nikonov VI. Four-wave interaction in a multimode waveguide with Kerr nonlinearity in a scheme with concurrent pump waves [In Russian]. Physics of Wave Processes and Radio Systems 2019; 22(2): 13-18. DOI: 10.18469/1810-3189.2019.22.2.13-18.
  15. Ivakhnik VV, Kapizov DR, Nikonov VI. Quality of wavefront reversal for four-wave interaction in a multimode waveguide with thermal nonlinearity. Computer Optics 2022; 46(1): 48-55. DOI: 10.18287/2412-6179-CO-1011.
  16. Agishev IN, Tolstik AL. Highly effective six-wave mixing in linearly absorbing organic liquids. Tech Phys Lett 2009; 35(4): 362-364. DOI: 10.1134/ S1063785009040221.
  17. Delone NB, Krainov VP. Fundamentals of nonlinear optics of atomic gases [In Russian]. Moscow: "Fizmatlit" Publisher; 1986.
  18. Gorbach DV, Nazarov SA, Tolstik AL. Degenerate polarization multiwave mixing between light beams in a solution of rhodamine 6G dye. Bulletin of the Russian Academy of Sciences. Physics 2013; 77(12): 1412-1415. DOI: 10.3103/S1062873813120046.
  19. Zhang Z, Xue X, Li C, Cheng S, Han L, Chen H, Zheng H, Zhang Y. Coexisting four-wave mixing and six-wave mixing in three-level atomic system. Opt Commun 2012; 285(17): 3627-2670. DOI: 10.1016/j.optcom.2012.04.025.
  20. Vinogradova MB, Rudenko OV, Sukhorukov AP. Wave theory [In Russian]. Moscow: "Fizmatlit" Publisher; 1979.
  21. Tikhonov EA, Shpak MT. Nonlinear optical phenomena in organic compounds [In Russian]. Kiev: "Naukova Dumka" Publisher; 1979.
  22. Miyanaga S, Ohtateme H, Kawano K, Fujiwara H. Excited-state absorption and pump propagation effects on optical phase conjugation in a saturable absorber. J Opt Soc Am B 1993; 10(6): 1069-1076. DOI: 10.1364/JOSAB.10.001069.
  23. Ivakhnik VV. Wavefront reversal at four-wave interactions [In Russian]. Samara: Samara State University Publisher; 2010.
  24. Marcuse D, ed. Integrated optics. New York: IEEE Press; 1973.
  25. Ivakhnik VV, Vorobeva EV, Kapizov DR. Characteristics of a four-wave radiation converter in a multimode waveguide with resonant nonlinearity. 2023 IX Int Conf on Information Technology and Nanotechnology (ITNT). DOI: 10.1109/ITNT57377.2023.10139099.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20