(49-1) 05 * << * >> * Russian * English * Content * All Issues
  
Control of the formation and detection of on-axis and off-axis diffraction orders with two-level phase quantization of a vortex lens
 O.A. Dyukareva 1, A.V. Ustinov 2, S.N. Khonina 1,2
 1 Samara National Research University,
 443086, Samara, Russia, Moskovskoye Shosse 34;
     2 Image Processing Systems Institute, NRC "Kurchatov Institute",
  443001, Samara, Russia, Molodogvardeyskaya 151
 PDF, 2356 kB
  PDF, 2356 kB
DOI: 10.18287/2412-6179-CO-1527
Pages: 36-43.
Full text of article: Russian language.
 
Abstract:
The paper investigates the performance of a tilted  vortex phase lens, quantized at a given level and allowing the generation of  specified local maxima both on the optical axis and off it. A possibility of  detecting individual diffraction orders and their combination is demonstrated.  A combination of quantized optical elements is considered, which makes it  possible to generate local maxima in both the longitudinal and transverse  planes.
Keywords:
vortex lens, phase quantization, local foci, vortex  beams detection.
Citation:
  Dyukareva OA, Ustinov AV, Khonina SN. Control of  the formation and detection of on-axis and off-axis diffraction orders with  two-level phase quantization of a vortex lens. Computer Optics 2025; 49(1): 36-43. DOI: 10.18287/2412-6179-CO-1527.
Acknowledgements:
  This work was funded within the Development Program  of Samara National Research University and under a government project of the  National Research Center "Kurchatov Institute".
References:
  - Du J, Wang J. High-dimensional structured light  coding/decoding for freespace optical communications free of obstructions. Opt  Lett 2015; 40(21): 4827-4857. DOI: 10.1364/OL.40.004827.
 
- He C, Shen Y, Forbes A. Towards higher-dimensional  structured light. Light Sci Appl 2022; 11: 205. DOI: 10.1038/s41377-022-00897-3.
 
- Goossens  JW, Yousefi MI, Jaouën Y, Hafermann H. Polarization-division multiplexing based  on the nonlinear Fourier transform. Opt Express 2017; 25; 26437–26452. DOI: 10.1364/OE.25.026437
 
- Man  Z, Min C, Zhang Y, Shen Z, Yuan X-C. Arbitrary vector beams with selective  polarization states patterned by tailored polarizing films. Laser Phys 2013;  23(10): 105001. DOI: 10.1088/1054-660X/23/10/105001.
 
- Khonina  SN, Ustinov AV, Porfirev AP. Vector Lissajous laser beams. Opt Lett 2020;  45(15): 4112-4115. DOI: 10.1364/OL.398209.
 
- Khonina  SN, Ustinov AV, Fomchenkov SA, Porfirev AP. Formation of hybrid higher-order  cylindrical vector beams using binary multi-sector phase plates. Sci Rep 2018;  8: 14320. DOI: 10.1038/s41598-018-32469-0.
 
- Dorrah  AH, Rubin NA, Tamagnone M, Zaidi A, Capasso F. Structuring total angular  momentum of light along the propagation direction with polarization-controlled  meta-optics. Nat Commun 2021; 12: 6249. DOI: 10.1038/s41467-021-26253-4.
 
- Li  A, Singh S, Sievenpiper D. Metasurfaces and their applications. Nanophotonics  2018; 7(6): 989-1011. DOI: 10.1515/nanoph-2017-0120.
 
- Yoon  G, Tanaka T, Zentgraf T, Rho J. Recent progress on metasurfaces: applications  and fabrication. J Phys D: Appl Phys 2021; 54(38): 383002. DOI:  10.1088/1361-6463/ac0faa.
 
- Khonina  SN, Butt MA, Kazanskiy NL. A review on reconfigurable metalenses  revolutionizing flat optics. Adv Opt Mater 2023; 12(14): 2302794. DOI:  10.1002/adom.202302794.
 
- Kani  J, Iwatsuki K, Imai T. Optical multiplexing technologies for access-area  applications. IEEE J Sel Top Quantum Electron 2006; 12(4): 661-668. DOI: 10.1109/JSTQE.2006.876170.
 
- Kotlyar  VV, Kovalev AA, Skidanov RV, Khonina SN, Turunen J. Generating hypergeometric  laser beams with a diffractive optical element. Appl Opt 2008; 47(32):  6124-6133. DOI: 10.1364/AO.47.006124.
 
- Wang  Z, Zhang N, Yuan X-C. High-volume optical vortex multiplexing and  de-multiplexing for free-space optical communication. Opt Express 2011; 19(2):  482-492. DOI: 10.1364/OE.19.000482.
 
- Sun  CL, Yu Y, Chen GY, Zhang XL. Integrated switchable mode exchange for  reconfigurable mode-multiplexing optical networks. Opt Lett 2016; 41(14):  3257-3260. DOI: 10.1364/OL.41.003257.
 
- Fazea  Y, Mezhuyev V. Selective mode excitation techniques for mode-division  multiplexing: a critical review. Opt Fiber Technol 2018; 45: 280-288. DOI:  10.1016/j.yofte.2018.08.004.
 
- Su  YK, He Y, Chen HS, Li XY, Li GF. Perspective on mode-division multiplexing.  Appl Phys Lett 2021; 118(20): 200502. DOI: 10.1063/5.0046071.
 
- Wang  X, Yan D, Chen Y, Qi T, Gao W. Parallel multiplexing optical spatial  differentiation based on a superposed complex amplitude filter, Optics and  Lasers in Engineering, 2025; 184(1): 108669. DOI: 10.1016/j.optlaseng.2024.108669.
 
- Borghi  R, Cincotti G, Santarsiero M. Diffractive variable beam splitter: optimal  design. J Opt Soc Am A 2000; 17(1): 63-67. DOI: 10.1364/JOSAA.17.000063.
 
- Lei  T, Zhang M, Li Y, Jia P, Liu GN, Xu X, Li Z, Min C, Lin J, Yu C, Niu H. Massive  individual orbital angular momentum channels for multiplexing enabled by  Dammann gratings. Light Sci Appl 2015; 4: e257. DOI: 10.1038/lsa.2015.30.
 
- Khorin  PA, Mamaeva MP, Kapitonov YV, Khonina SN. Polarization-Mode Transformation of  the Light Field during Diffraction on Amplitude Binary Gratings, Photonics  2024; 11: 848. DOI: 10.3390/photonics11090848.
 
- Rastani  K, Marrakchi A, Habiby SF, Hubbard WM, Gilchrist H, and Nahory RE. Binary phase  Fresnel lenses for generation of two-dimensional beam arrays, Appl Opt 1991;  30: 1347–1354. DOI: 10.1364/AO.30.001347
 
- Faklis  D, Morris GM. Spectral properties of multi-order diffractive lenses. Appl Opt  1995; 34(14): 2462-2468. DOI: 10.1364/AO.34.002462.
 
- Khonina  SN, Ustinov AV, Skidanov RV, Porfirev AP. Local foci of a parabolic binary  diffraction lens. Appl Opt 2015; 54(18): 5680-5685. DOI: 10.1364/AO.54.005680.
 
- Motogaito  A, Iguchi Y, Kato S, Hiramatsu K. Fabrication and characterization of a binary  diffractive lens for controlling focal distribution. Appl Opt 2020; 59(3):  742-747. DOI: 10.1364/AO.381139.
 
- Janicijevic  L, Topuzoski S. Fresnel and Fraunhofer diffraction of a Gaussian laser beam by  fork-shaped gratings. J Opt Soc Am A 2008; 25(11): 2659-2669. DOI:  10.1364/JOSAA.25.002659.
 
- Topuzoski  S. Generation of optical vortices with curved fork-shaped holograms. Opt Quant  Electron 2016; 48(2): 138. DOI: 10.1007/s11082-016-0405-5.
 
- Saad  F, El Halba EM, Belafhal A. Generation of generalized spiraling Bessel beams of  arbitrary order by curved fork-shaped holograms. Opt Quant Electron 2016; 48:  454. DOI: 10.1007/s11082-016-0723-7.
 
- Khonina  SN, Ustinov AV, Kirilenko MS, Kuchmizhak AA, Porfirev AP. Application of binary  curved fork grating for the generation and detection of optical vortices  outside the focal plane. J Opt Soc Am B 2020; 37(6): 1714-1721. DOI:  10.1364/JOSAB.388431.
 
- Degtyarev  SA, Porfirev AP, Khonina SN, Karpeev SV. Demonstration of vortical beams  spectral stability formed in non-zero diffraction orders. J Phys Conf Ser 2016;  735: 012023. DOI: 10.1088/1742-6596/735/1/012023.
 
- Berezny  AE, Karpeev SV, Uspleniev GV. Computer-generated holographic optical elements  produced by photolithography. Opt Lasers Eng 1991; 15(5): 331-340. DOI:  10.1016/0143-8166(91)90020-T.
 
- Sohn  J-S, et al. Design and fabrication of diffractive optical elements by use of  gray-scale photolithography. Appl Opt 2005; 44(4): 506-511. DOI:  10.1364/AO.44.000506.
 
- Aguiam  DE, et al. Fabrication and optical characterization of large aperture  diffractive lenses using greyscale lithography. Micro Nano Eng 2022; 14(5):  100111. DOI: 10.1016/j.mne.2022.100111.
 
- Anh  NNH, Rhee H-G, Ghim Y-S. Novel fabrication and designs for hybrid optical  elements with wider angle field of view by using integrated direct laser  lithographic system. Opt Lasers Eng 2023; 170: 107774. DOI:  10.1016/j.optlaseng.2023.107774.
 
- Khonina  SN, Ustinov AV, Porfirev AP. Diatom optical element: a quantized version of the  generalized spiral lens. Opt Lett 2022; 47(16): 3988-3991. DOI:  10.1364/OL.469113.
 
- Zhou  X, Song Q, Yang X, Cai W. Generating phase-only diffractive optical elements  using adaptive constraints in the Fourier domain. Opt Commun 2023; 535: 129360.  DOI: 10.1016/j.optcom.2023.129360.
 
- Khorin  PA, Khonina SN. Influence of 3D helical microstructure shape deviations on the  properties of a vortex beam generated in the near diffraction zone. J Opt  Technol 2023; 90(5): 236-241. DOI: 10.1364/JOT.90.000236.
 
- Hsu  W-F, Lin C-H. Optimal quantization method for uneven-phase diffractive optical  elements by use of a modified iterative Fourier-transform algorithm. Appl Opt  2005; 44(27): 5802-5808. DOI: 10.1364/AO.44.005802.
 
- Liu  X, Lv G, Ding S, Wang Z, Wang S, Feng Q. Regional iterative optimization  algorithm to reduce error caused by DOE binarization. Appl Opt 2019; 58(26):  7227-7232. DOI: 10.1364/AO.58.007227.
 
- Khonina  SN, Ustinov AV. Binary multi-order diffraction optical elements with variable  fill factor for the formation and detection of optical vortices of arbitrary  order. Appl Opt 2019; 58(30): 8227-8236. DOI: 10.1364/AO.58.008227.
 
- Khonina  SN, Ustinov AV. Spatially-spectral analysis of binary diffractive optical  elements coded using the complex-conjugated addition. Izvestia of the Samara  Scientific Center of the Russian Academy of Sciences 2014; 6: 10-17.
 
- Ferstl  M, Hermerschmidt A, Dias D, Steingrüber R. Theoretical and experimental  properties of a binary linear beam-splitting element with a large fan angle. J  Mod Opt 2004; 51(14): 2125–2139. DOI: 10.1080/09500340408232518
 
- Hermerschmidt  A, Krüger S, and Wernicke G. Binary diffractive beam splitters with arbitrary  diffraction angles. Opt Lett 2007; 32: 448-450. DOI: 10.1364/OL.32.000448
 
- Barlev  O, Golub MA. Multifunctional binary diffractive optical elements for structured  light projectors. Opt Express 2018; 26(16): 21092-21107. DOI:  10.1364/OE.26.021092.
 
- Meshalkin  AYu, Podlipnov VV, Ustinov AV, Achimova EA. Analysis of diffraction efficiency  of phase gratings in dependence of duty cycle and depth. J Phys Conf Ser 2019;  1368: 022047. DOI: 10.1088/1742-6596/1368/2/022047.
 
- Xu C,  Pang H, Cao A, Deng Q. Alternative design of binary phase diffractive optical  element with non-π phase difference. Appl Sci 2021; 11(3): 1116. DOI:  10.3390/app11031116.
 
- Gretzki  P, Gillner A. Programmable diffractive optic for multi-beam processing:  applications and limitations. Proc. SPIE 2017; 10347: 103470V. DOI:  10.1117/12.2274448
 
- Huang  K, et al. Planar diffractive lenses: Fundamentals, functionalities, and  applications. Adv Mater 2018; 30(26): 1704556. DOI: 10.1002/adma.201704556. 
- Wang F, Zhang Z, Wang R, Zeng X, Yang X, Lv S, Zhang F, Xue D, Yan J,  and Zhang X. Distortion measurement of optical system using phase diffractive  beam splitter. Opt Express 2019; 27: 29803-29816 DOI: 10.1364/OE.27.029803.
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20