(49-1) 06 * << * >> * Russian * English * Content * All Issues
  
Construction and simulation of fiber optic stress wave sensing system based on wavelet packet-lamb wave damage imaging
 X.L. Li 1, F. Liu 1, Q.N. Hui 1
 1 College of Science,
     710065, Xi'an, China, Xi'an Shiyou University
 
 PDF, 2587 kB
  PDF, 2587 kB
DOI: 10.18287/2412-6179-CO-1491
Pages: 44-52.
Full text of article: English language.
 
Abstract:
Nowadays,  various materials are extensively utilized in various fields. These materials often cause invisible damage with the long-term service  of machines. A health monitoring system for materials was  presented to eliminate safety hazards as much as possible. This study proposed a fiber optic stress wave sensing system in  view of Lamb wave damage imaging to address the limitations in the use of materials in some flaw detection  systems. Meanwhile, Lamb waves with small propagation attenuation and long distance in the  material were selected as the detection method. Then the fiber  optic stress wave sensing system was used to carry out damage imaging. The imaging principle of wavelet packet decomposition was selected to avoid losing low-frequency information. The  experiment demonstrated that compared to the original method in view of time correlation  coefficient, the method used in this study improved the signal-to-noise ratio  of damaged images by 1.0112 dB, higher accuracy, better imaging quality, and  more pronounced output images. This research offers a theoretical foundation  for the application of fiber optic stress wave sensing systems in the flaw  detection, provides practical value for the practical application of Lamb  waves, and has positive significance for the application of flaw detection in  industry.
Keywords:
Lamb  wave, damage identification, fiber optic sensors,  wavelet packet decomposition.
Citation:
  Li XL, Liu F, Hui QN. Construction and simulation of fiber optic stress wave sensing system based on wavelet packet-lamb wave damage imaging. Computer Optics 2025; 49 (1): 44-52. DOI: 10.18287/2412-6179-CO-1491.
References:
  - Silva GFD, Souza EEPD, Filho EFDS, Farias PCMA, Albuquerque MCS, Sliva ICD, Farias CTT. Constrained neural classifier training method for  flaw detection in industrial pipes using particle swarm optimisation. Int J  Innov Comput Appl 2022; 13(3): 150-160. DOI: 10.1504/IJICA.2022.124239.
 
- Vivas G, Gabriel J,  Etxaniz J, Aranguren G. Proof of concept for impact and flaw detection in  airborne structures. Proced Struct Integr 2022; 37(1): 344-350. DOI: 10.1016/j.prostr.2022.01.094.
 
- Jiang  S, Zhao L, Du C. Combining dynamic XFEM with machine learning for detection of  multiple flaws. Int J Numer Method Eng 2021; 122(21): 6253-6282. DOI:  10.1002/nme.6791. 
 
- Xu  Q, Wang H, Chen Z, Huang Z, Hu R. Detection of cracks in aerospace turbine  disks using an ultrasonic phased array C-scan device. Struct Durab Health Monit  2021; 15(1): 39-52. DOI: 10.32604/sdhm.2021.014815. 
 
- Zhang  M, Zhang W, Liang X, Zhao Y, Dai W. Detection of fatigue crack propagation  through damage characteristic FWHM using FBG sensors. Sensor Rev 2020; 40(6):  665-673. DOI: 10.1108/SR-03-2020-0056. 
 
- Silik  A, Noori M, Altabey WA, Dang J, Ghiasi R, Wu Z. Optimum wavelet  selection for nonparametric analysis toward structural health monitoring for  processing big data from sensor network: A comparative study. Struct Health  Monit 2022; 21(3): 803-825. DOI: 10.1177/147592172110102. 
 
- Amer  A, Kopsaftopoulos FP. Statistical guided-waves-based structural health  monitoring via stochastic non-parametric time series models. Struct Health  Monit 2022; 21(3): 1139-1166. DOI: 10.1177/14759217211024527. 
 
- Mao  J, Yang C, Wang H, Zhang Y, Lu H. Bayesian operational modal analysis with  genetic optimization for structural health monitoring of the long-span bridge.  Int J Struct Stab Dy 2022; 22(05): 2250051-2250074. DOI:  10.1142/S0219455422500511. 
 
- Huang  X, Wang P, Zhang S, Zhao X, Zhang Y. Structural health monitoring and material  safety with multispectral technique: A review. J Safety Sci Res 2022; 3(1):  48-60. DOI: 10.1016/j.jnlssr.2021.09.004. 
 
- Qhobosheane  RG, Rabby MM, Vadlamudi V, Reifsnider K, Raihan R. Smart self-sensing  piezoresistive composite materials for structural health monitoring. Ceramics  2022; 5(3): 253-268. DOI: 10.3390/ceramics5030020 
 
- Chen M, Qiu H,  Li F. SH guided wave tomography for structural health monitoring based on  antiparallel thickness-shear (d15) piezoelectric transducers. IEEE  Sensors J 2021; 21(24): 27385-27392. DOI:  10.1109/JSEN.2021.3127005. 
 
- Ye  K, Zhou K, Zhigang R, Zhang R, Li C, Sun H, Huang S. Ultrasonic unilateral  double-position excitation lamb wave defect detection and quantification method  for ground electrode of transmission tower. Int J Appl Electrom Mech 2022;  68(1): 29-43. DOI: 10.3233/JAE-210039. 
 
- Zhao  G, Liu C, Sun L, Yang N, Zhang L, Jiang M, Jia L, Sui Q. Aluminum alloy fatigue  crack damage prediction based on lamb wave-systematic resampling particle  filter method. Struct Durab Health Monit 2022; 16(1): 81-96. DOI:  10.32604/sdhm.2022.016905. 
 
- Mousavi  SF, Hashemabadi SH, Jamali J. New semi three-dimensional approach for  simulation of Lamb wave clamp-on ultrasonic gas flowmeter. Sensor Rev 2020;  4(40): 465-476. DOI: 10.1108/SR-08-2019-0203. 
 
- Fakih  MA, Manuel C, Chiachío J, Mustapha S. A Bayesian approach for damage assessment  in welded structures using Lamb-wave surrogate models and minimal sensing. NDT  E Int 2022; 128(1): 102626-102648. DOI: 10.1016/j.ndteint.2022.102626. 
 
- Abbasi  Z, Honarvar F. Contribution of Lamb wave modes in the formation of higher order  modes cluster (HOMC) guided waves. Proc Inst Mech Eng Pt C J Mechan Eng Sci  2022; 236(7): 3595-3605. DOI: 10.1177/095440622110424. 
 
- Wu  Y, Shen X, Li D. Numerical and experimental research on damage shape  recognition of aluminum alloy plate based on Lamb wave. J Intell Mater Syst  Struct 2021; 32(18-19): 2273-2288. DOI: 10.1177/1045389X21990885. 
 
- Karpeev SV, Khonina SN. Optical fiber sensors  based on diffractive and fiber periodic microstructures. In Book: Photonics  elements for sensing and optical conversions. Ch 6. CRC Press, 2024: 158-177.  DOI: 10.1201/9781003439165-6. 
 
- Karpeev SV, Pavelyev VS,  Khonina SN, Kazanskiy NL, Gavrilov AV, Eropolov VA. Fibre sensors based on transverse  mode selection. J Mod Opt 2007; 54(6): 833-844. DOI: 10.1080/09500340601066125. 
 
- Garitchev  VP, Golub MA, Karpeev SV, Krivoshlykov SG, Petrov NI, Sissakian IN, Willsch R.  Experimental investigation of mode coupling in a multimode graded-index fiber  caused by periodic microbends using computer-generated spatial filters. Opt  Commun 1985; 55(6): 403-405. DOI: 10.1016/0030-4018(85)90140-3.
 
- Karpeev  SV, Pavelyev VS, Khonina SN, Kazanskiy NL. High-effective fiber sensors based  on transversal mode selection. Proc SPIE 2005; 5854: 163-169. DOI:  10.1117/12.634603.
 
- Wang  Z, Huang S, Wang S, Wang Q, Zhao W. Design of electromagnetic acoustic  transducer for helical lamb wave with concentrated beam. IEEE Sensors J 2020;  20(12): 6305-6313. DOI: 10.1109/JSEN.2020.2976512. 
 
- Maihulla AS, Yusuf I, Bala SI. Reliability and  performance analysis of a series-parallel system using Gumbel-Hougaard family  copula. J Comput Cogn Eng 2022; 1(2): 74-82. DOI:  10.47852/bonviewJCCE2022010101. 
- Bai Y, Shen H, He Y, Wang L, Liu F, Geng X, Ren D,  Liu S, Dang X, Li Y. Analysis of the stress-wave influence parameters of  silicon MOSFET under 300V drain source voltage. IEEE Sensors J 2021; 21(18):  20107-20113. DOI:  10.1109/JSEN.2021.3094885.
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20