(49-1) 08 * << * >> * Russian * English * Content * All Issues

Numerical simulation of light diffraction at an edge using geometric optics methods
R. Ilinsky 1

Joint Stock Company "Lytkarino Optical Glass Factory",
140080, Lytkarino, Russia, Moscow region, Parkovaya street 1

 PDF, 924 kB

DOI: 10.18287/2412-6179-CO-1394

Pages: 60-66.

Full text of article: Russian language.

Abstract:
A mathematical model is proposed for the spatial distribution of a radiation flux that occurs when a plane wave is diffracted at an edge. In this model, the spatial distribution of the radiation flux is described by rays with the radiation fluxes strung on them. A feature of the proposed model is that the radiation fluxes strung on the rays are added algebraically.

Keywords:
diffraction, geometrical optics, wigner transforms, ray tracing.

Citation:
Ilinsky RE. Numerical simulation of light diffraction at an edge using geometric optics methods. Computer Optics 2025; 49(1): 60-66. DOI: 10.18287/2412-6179-CO-1394.

References:

  1. Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. Cambridge University Press; 1980.
  2. Yun Z, Iskander MF. Ray tracing for radio propagation modeling: Principles and applications. IEEE Access 2015; 3: 1089-1100. DOI: 10.1109/ACCESS.2015.2453991.
  3. Nguyen Duc, Shirai Hiroshi. A Discussion on Physical Optics Approximation for Edge Diffraction by A Conducting Wedge. IEICE T Electron 2021; 5: 176-183. DOI: 10.1587/transele.2021ECP5031.
  4. Rick T, Mathar R. Fast edge-diffraction-based radio wave propagation model for graphics hardware. 2007 2nd Int ITG Conf on Antennas 2007: 15-19. DOI: 10.1109/INICA.2007.4353923.
  5. Okada M, Onoye T, Kobayashi W. A ray tracing simulation of sound diffraction based on the analytic secondary source model. IEEE Trans Audio Speech Lang Process 2012; 20(9): 2448-2460. DOI: 10.1109/TASL.2012.2203809.
  6. Pisha L, Atre S, Burnett J, Yadegari S. Approximate diffraction modeling for real-time sound propagation simulation. J Acoust Soc Am 2020; 148(4): 1922-1933. DOI: 10.1121/10.0002115.
  7. Gershun A. The light field. J Math Phys 1939; 18(1-4): 51-151. DOI: 10.1002/sapm193918151.
  8. Glassner AS. An introduction to ray tracing. Academic Press Ltd; 1989. ISBN: 978-0-12-286160-4.
  9. Welford WT. Aberrations of optical systems. New York, London: Taylor & Francis; 1986. ISBN: 978-0-85274-564-9.
  10. Freniere ER, Gregory GG, Hassler RA. Edge diffraction in Monte Carlo ray tracing. Proc SPIE 1999; 3780: 151-157. DOI: 10.1117/12.363773.
  11. Coffey KL, Priestley KJ, Mahan JR, Sanchez MC. Diffraction models of radiation entering an aperture for use in a Monte Carlo ray-trace environment. Proc SPIE 1998; 3429: 213-219. DOI: 10.1117/12.328547.
  12. Freniere E, Gauvin MA, Youngworth RN. The different (yet similar) realms of illumination and stray light modeling. Proc SPIE 2015; 9577: 957708. DOI: 10.1117/12.2190683.
  13. Cuypers T, Horstmeyer R, Oh SB, Bekaert P, Raskar R. Validity of the Wigner distribution function for ray-based imaging. 2011 IEEE Int Conf on Computational Photography (ICCP) 2011: 1-9. DOI: 10.1109/ICCPHOT.2011.5753129.
  14. Oh SB, Kashyap S, Garg R, Chandran S, Raskar R. Rendering wave effects with augmented light field. Comput Graph Forum 2010; 29(2): 507-516. DOI: 10.1111/j.1467-8659.2009.01620.x.
  15. Mout M, Wick M, Bociort F, Petschulat J, Urbach P. Ray tracing the Wigner distribution function for optical simulations. Opt Eng 2018; 57(1): 014106. DOI: 10.1117/1.OE.57.1.014106.
  16. Mout BM, Wick M, Bociort F, Urbach HP. A Wigner-based ray-tracing method for imaging simulations. Proc SPIE 2015; 9630: 96300Z. DOI: 10.1117/12.2196814.
  17. Ilinsky RE. Geometric-optical model of a multimode Hermite–Gaussian beam. Computer Optics 2023; 47(4): 541-547. DOI: 10.18287/2412-6179-CO-1239.
  18. Gitin AV. Radiometry. A complex approach. J Opt Technol 1998; 65(2): 132-140.
  19. Abramochkin EG, Volostnikov VG. The modern optics of the Gaussian beams [In Russian]. Moscow: "Fizmatlit" Publisher, 2010.
  20. Alonso MA. Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles. Adv Opt Photonics 2011; 3(4): 272-365. DOI: 10.1364/AOP.3.000272.
  21. Abramowitz M, Stegun IA. Handbook of mathematical functions. New York: Dover Publications Inc; 1965.
  22. Jahnke E, Emde F, Lösch F. Tables of higher functions. New York: McGraw-Hill Book Co; 1960.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20