(49-1) 07 * << * >> * Russian * English * Content * All Issues

Thermal entanglement in the three-qubit Tavis-Cummings model with Kerr nonlinearity
A.R. Bagrov 1, E.K. Bashkirov 1

Samara National Research University,
443086, Samara, Russia, Moskovskoye shosse 34

 PDF, 1460 kB

DOI: 10.18287/2412-6179-CO-1544

Pages: 53-59.

Full text of article: English language.

Abstract:
We obtained a solution of the Liouville equation for a system of three identical qubits interacting without detuning with a thermal field of a cavity with a Kerr medium, for two type of initial pure genuine W-entangled qubits states. On its basis, three entanglement parameters: fidelity, tangle and pairwise negativities were calculated. We obtained that sudden death of entanglement takes place for large intensities of the cavity thermal noise for all considered W-states. We also showed that Kerr nonlinearity prevents the destruction of the initial qubits entanglement induced by the thermal noise of the cavity and eliminates the sudden death of entanglement.

Keywords:
qubits, cavity, thermal field, entanglement, fidelity, tangle, negativity, Kerr nonlinearity, sudden death of entanglement.

Citation:
Bagrov AR, Bashkirov EK. Thermal entanglement in the three-qubit Tavis-Cummings model with Kerr nonlinearity. Computer Optics 2025; 49(1): 53-59. DOI: 10.18287/2412-6179-CO-1544.

References:

  1. Alexeev Y, Bacon D, Brown KR, Calderbank R, Carr LD, Chong FT, DeMarco B, Englung D, Farhi E, Fefferman B, Gorshkov AV, Houck A, Kim J, Kimmel S, Lange M, Lloyd S, Lukin MD, Maslov D, Maunz P, Monroe C, Preskill J, Roetteler M, Savage MJ, Thompson J. Quantum computer systems for scientific discovery. PRX Quantum 2021; 2(1): 017001. DOI: 10.1103/PRXQuantum.2.017001.
  2. Souza AM, Sarthour RS, Oliveria LS, Vedral V. Entanglement in many body systems. Phys Rev B Condens 2023; 653: 414511. DOI: 10.1016/j.physb.2022.414511.
  3. Duarte FJ. Fundamentals of quantum entanglement. Bristol: IOP Publishing; 2022. ISBN: 978-0750352659.
  4. Barshak EV, Lapin BP, Vikulin DV, Alieva SS, Alexeyev CN, Yavorsky MA. All-fiber SWAP-CNOT gate for optical vortices. Computer Optics 2021; 45(6): 853-859. DOI: 10.18287/2412-6179-CO-938.
  5. Neely M, ed. Generation of three-qubit entangled states using superconducting phase qubits. Nature 2010; 467(7315): 570-573. DOI: 10.1038/nature09418.
  6. Roos CF, ed. Control and measurement of three-qubit entangled states. Science 2004; 304: 1478-1480. DOI: 10.1126/science.1097522.
  7. Dogra S, Dorai K, Arvind. Experimental construction of generic three-qubit states and their reconstruction from two-party reduced states on an NMR quantum information processor. Phys Rev A 2015; 91(2): 022312. DOI: 10.1103/PhysRevA.91.022312.
  8. Rao KRK, Kumar A. Entanglement in a 3-spin Heisenberg-XY chain with nearest-neighbor interactions, simulated in an NMR quantum simulator. Int. J. Quant. Inform. 2012; 10(4): 1250039. DOI: https://doi.org/10.1142/S0219749912500396.
  9. Bashkirov EK. Thermal entanglement of two atoms with dipole-dipole and Ising interactions. Proc SPIE 2022; 12193: 121930R. DOI: 10.1117/12.2625842.
  10. Bagrov AR, Bashkirov EK. Sudden death of entanglement in a thermal three-qubit Tavis-Cummings model. Proc 9th IEEE Int Conf on Information Technology and Nanotechnology 2023: 1-5. DOI: 10.1109/ITNT57377.2023.10139206.
  11. Walls D. Squeeze states of light. Nature 1983; 306: 141-146. DOI: 10.1038/306141a0.
  12. Fenwick KL, England DG, Bustard PJ, Fraser JM, Sussman BJ. Carving out configurable ultrafast pulses from a continuous wave source via the optical Kerr effect. Opt Express 2020; 28(17): 24845-24853. DOI: 10.1364/OE.399878.
  13. Kirchmair G, Vlastakis B, Leghtas Z, Nigg SE, Paik H, Ginossar E, Mirrahimi M, Frunzio L, Girvin SM, Schoelkopf RJ. Observation of quantum state collapse and revival due to the single-photon Kerr effect. Nature 2013; 495: 205-209. DOI: 10.1038/nature11902.
  14. Bashkirov EK. Thermal entanglement in Tavis-Cummings models with Kerr media. Proc SPIE 2022; 12193: 121930Q. DOI: 10.1117/12.2625838.
  15. Yu T, Eberly JH. Sudden death of entanglement. Science 2009; 323(5914): 598-601. DOI: 10.1126/science.1167343.
  16. Decordi GL, Vidiella-Barranco A. Sudden death of entanglement induced by a minimal thermal environment. Opt Commun 2020; 47515: 126233. DOI: 10.1016/j.optcom.2020.126233.
  17. Xie S, Younis D, Eberly JH. Evidence for unexpected robustness of multipartite entanglement against sudden death from spontaneous emission. Phys Rev Res 2023; 5(3): L032015. DOI: 10.1103/PhysRevResearch.5.L032015.
  18. Awasthi N, Joshi DK. Sustainability of entanglement sudden death under the action of memory channel. Laser Phys Lett 2023; 20(2): 025202. DOI: 10.1088/1612-202X/acaece.
  19. Ma M, Li Y, Shang J. Multipartite entanglement measures: a review. arXiv Preprint. 2023. Source: <https://arxiv.org/abs/2309.09459>. DOI: 10.48550/arXiv.2309.09459.
  20. Liang Y-C, Yeh Y-H, Mendonca PEMF, The RY, Reid MD, Drummond PD. Quantum fidelity measures for mixed states. Rep Prog Phys 2019; 82(7): 076001. DOI: 10.1088/1361-6633/ab1ca4.
  21. Coffman V, Kundu J, Wootters WK. Distributed entanglement. Phys Rev A 2000; 61(5): 052306. DOI: 10.1103/PhysRevA.61.052306.
  22. Wootters WK. Entanglement of formation and concurrence. Quant Inform Comput 2001; 1(1): 27-44. DOI: 10.26421/QIC1.1-3.
  23. Schneeloch J, Tison CC, Jacinto HS, Alsing PM. Negativity vs. purity and entropy in witnessing entanglement. Sci Rep 2023; 13(1): 4601. DOI: 10.1038/s41598-023-31273-9.
  24. Horodecki R, Horodecki M, Horodecki P, Horodecki K. Quantum entanglement. Rev Mod Phys 2009; 81(2): 865-942. DOI: 10.1103/RevModPhys.81.865.
  25. Wang A-M. Eigenvalues, Peres' separability condition, and entanglement. Commun Theor Phys 2004; 42(2): 206-210. DOI: 10.1088/0253-6102/42/2/206.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20