(49-2) 03 * << * >> * Russian * English * Content * All Issues
  
Detection of elliptical polarization parameters using a metalens
 A.G. Nalimov 1,2, V.V. Kotlyar 1,2, A.A. Kovalev 1,2, S.D. Poletaev 1,2, Y.V. Khanenko 1,2
 1 Image Processing Systems Institute, NRC "Kurchatov Institute",
     443001, Samara, Russia, Molodogvardeyskaya 151;
     2 Samara National Research University,
  443086, Samara, Russia, Moskovskoye Shosse 34
  PDF, 1648 kB
DOI: 10.18287/2412-6179-CO-1515
Pages: 180-186.
Full text of article: Russian language.
 
Abstract:
A metalens capable of  detecting the polarization ellipticity of an incident beam is considered in  this paper. This metalens consists of blocks with diffraction gratings of a  140-nm height and a 220-nm period. The metalens operates as a polarizer, which  depends on one transverse coordinate, and a focuser. It is capable of both  separating linearly polarized radiation into two focal spots with the  opposite-handed circular polarizations and detecting the circular polarization  handedness and degree of its ellipticity. Operating in a wide range of wavelengths  from 0.55 to 0.837 µm, the metalens can be used in the range from 0.64 to 0.837  µm to identify the incident radiation wavelength due to an almost linear shift  of the focal spot in the transverse plane with the wavelength.
Keywords:
metasurface, spin angular momentum, spin Hall  effect, detection of elliptical polarization.
Citation:
  Nalimov AG, Kotlyar VV,  Kovalev AA, Poletaev SD, Khanenko YV. Detection of elliptical  polarization parameters using a metalens. Computer Optics 2025; 49(2): 180-186.  DOI: 10.18287/2412-6179-CO-1515.
Acknowledgements:
  The work was partly  funded by the Russian Science Foundation under grant #23-12-00236 (Sections  “Demultiplexing of elliptical polarizations”, “Operation of the metalens at  different wavelengths”) and within the government project of the NRC “Kurchatov  Institute” (Sections “Introduction”, “Conclusion”).
References:
  - Schuller JA, Barnard ES, Cai W, Jun YC, White JS,  Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat  Mater 2010; 9(3): 193-204. DOI: 10.1038/nmat2630.
 
  - Maier SA. Plasmonics: Fundamentals and  applications. Springer Science+Business Media LLC; 2007. ISBN: 978-0-387-33150-8.
 
  - Staude  I, et al. Tailoring directional scattering through magnetic and electric  resonances in subwavelength silicon nanodisks. ACS Nano 2013; 7(9): 7824-7832.  DOI: 10.1021/nn402736f.
     
  - Arbabi  A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control  of phase and polarization with subwavelength spatial resolution and high  transmission. Nat Nanotechnol 2015; 10(11): 937-943. DOI:  10.1038/nnano.2015.186.
     
  - Koshelev  K, Kivshar Y. Dielectric resonant metaphotonics. ACS Photonics 2020; 8(1):  102-112. DOI: 10.1021/acsphotonics.0c01315.
     
  - Lee  GY, et al. Metasurface eyepiece for augmented reality. Nat Commun 2018; 9(1):  4562. DOI: 10.1038/s41467-018-07011-5.
     
  - Tittl  A, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces.  Science 2018; 360(6393): 1105-1109. DOI: 10.1126/science.aas9768.
     
  - Kim  I, et al. Holographic metasurface gas sensors for instantaneous visual alarms.  Sci Adv 2021; 7(15): eabe9943. DOI: 10.1126/sciadv.abe9943.
     
  - Pahlevaninezhad  H, et al. Nano-optic endoscope for high-resolution optical coherence tomography  in vivo. Nat Photonics 2018; 12(9): 540-547. DOI: 10.1038/s41566-018-0224-2.
     
  - Nalimov  AG, Kotlyar VV. Multifocal metalens for detecting several topological charges  at different wavelengths. Computer Optics 2023; 47(2): 201-207. DOI:  10.18287/2412-6179-CO-1170.
     
  - Kotlyar  VV, Nalimov AG, Stafeev SS, Hu C, O’Faolain L, Kotlyar MV, Gibson D, Song S.  Thin high numerical aperture metalens. Opt Express 2017; 25(7): 8158-8167. DOI:  10.1364/OE.25.008158.
     
  - Chen  X, et al. Dual-polarity plasmonic metalens for visible light. Nat Commun 2012;  3: 1198. DOI: 10.1038/ncomms2207.
     
  - Qiu  X, Xie L, Qiu J, Zhang Z, Du J, Gao F. Diffraction-dependent spin splitting in  spin Hall effect of light on reflection. Opt Express 2015; 23(15): 18823-18831.  DOI: 10.1364/OE.23.018823.
     
  - Huang  L, et al. Helicity dependent directional surface plasmon polariton excitation  using a metasurface with interfacial phase discontinuity. Light Sci Appl 2013;  2: e70. DOI: 10.1038/lsa.2013.26.
     
  - Xiao  S, Zhong F, Liu H, Zhu S, Li J. Flexible coherent control of plasmonic  spin-Hall effect. Nat Commun 2015; 6: 8360. DOI: 10.1038/ncomms9360.
     
  - Puentes  G, Takayama O, Sukham J, Malureanu R, Lavrinenko AV. First experimental  observation of photonic spin Hall effect in hyperbolic metamaterials at visible  wavelengths. 2019 Conf on Lasers and Electro-Optics Europe & European  Quantum Electronics Conference (CLEO/Europe-EQEC) 2019: 1-1. DOI:  10.1109/CLEOE-EQEC.2019.8872873.
     
  - Yin  X, Ye Z, Rho J, Wang Y, Zhang X. Photonic spin Hall effect at metasurfaces.  Science 2013; 339(6126): 1405-1407. DOI: 10.1126/science.1231758.
     
  - Kim  M, Lee D, Yang Y. Reaching the highest efficiency of spin Hall effect of light  in the near-infrared using all-dielectric metasurfaces. Nat Commun 2022; 13:  2036. DOI: 10.1038/s41467-022-29771-x.
     
  - Kim  M, Lee D, Ko B, Rho J. Diffraction-induced enhancement of optical spin Hall  effect in a dielectric grating. APL Photonics 2020; 5: 066106. DOI:  10.1063/5.0009616.
     
  - Zhang  T, Wang H, Peng C, Chen Z. Linear-to-dual-circular polarization decomposition  metasurface based on rotated trimming-stub-loaded circular patch. Crystals  2023; 13(5): 831. DOI: 10.3390/ cryst13050831.
     
  - Li  SJ, Han BW, Li ZY, Liu XB, Huang GS, Li RQ, Cao XY. Transmissive coding  metasurface with dual-circularly polarized multi-beam. Opt Express 2022;  30(15): 26362-26376. DOI: 10.1364/OE.466036.
     
  - Wang  Z, Zhou D, Liu Q, Yan M, Wang X. Dual-mode vortex beam transmission metasurface  antenna based on linear-to-circular polarization converter. Opt Express 2023;  31(22): 35632-35643. DOI: 10.1364/OE.497017. 
 
  - Nalimov AG, Kovalev AA. Spin Hall effect of linearly polarized light  passed through a metasurface. Computer Optics 2024; 48(5): 662-668. DOI:  10.18287/2412-6179-CO-1500.
 
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20