(49-2) 03 * << * >> * Russian * English * Content * All Issues
Detection of elliptical polarization parameters using a metalens
A.G. Nalimov 1,2, V.V. Kotlyar 1,2, A.A. Kovalev 1,2, S.D. Poletaev 1,2, Y.V. Khanenko 1,2
1 Image Processing Systems Institute, NRC "Kurchatov Institute",
443001, Samara, Russia, Molodogvardeyskaya 151;
2 Samara National Research University,
443086, Samara, Russia, Moskovskoye Shosse 34
PDF, 1648 kB
DOI: 10.18287/2412-6179-CO-1515
Pages: 180-186.
Full text of article: Russian language.
Abstract:
A metalens capable of detecting the polarization ellipticity of an incident beam is considered in this paper. This metalens consists of blocks with diffraction gratings of a 140-nm height and a 220-nm period. The metalens operates as a polarizer, which depends on one transverse coordinate, and a focuser. It is capable of both separating linearly polarized radiation into two focal spots with the opposite-handed circular polarizations and detecting the circular polarization handedness and degree of its ellipticity. Operating in a wide range of wavelengths from 0.55 to 0.837 µm, the metalens can be used in the range from 0.64 to 0.837 µm to identify the incident radiation wavelength due to an almost linear shift of the focal spot in the transverse plane with the wavelength.
Keywords:
metasurface, spin angular momentum, spin Hall effect, detection of elliptical polarization.
Citation:
Nalimov AG, Kotlyar VV, Kovalev AA, Poletaev SD, Khanenko YV. Detection of elliptical polarization parameters using a metalens. Computer Optics 2025; 49(2): 180-186. DOI: 10.18287/2412-6179-CO-1515.
Acknowledgements:
The work was partly funded by the Russian Science Foundation under grant #23-12-00236 (Sections “Demultiplexing of elliptical polarizations”, “Operation of the metalens at different wavelengths”) and within the government project of the NRC “Kurchatov Institute” (Sections “Introduction”, “Conclusion”).
References:
- Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater 2010; 9(3): 193-204. DOI: 10.1038/nmat2630.
- Maier SA. Plasmonics: Fundamentals and applications. Springer Science+Business Media LLC; 2007. ISBN: 978-0-387-33150-8.
- Staude I, et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 2013; 7(9): 7824-7832. DOI: 10.1021/nn402736f.
- Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 2015; 10(11): 937-943. DOI: 10.1038/nnano.2015.186.
- Koshelev K, Kivshar Y. Dielectric resonant metaphotonics. ACS Photonics 2020; 8(1): 102-112. DOI: 10.1021/acsphotonics.0c01315.
- Lee GY, et al. Metasurface eyepiece for augmented reality. Nat Commun 2018; 9(1): 4562. DOI: 10.1038/s41467-018-07011-5.
- Tittl A, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 2018; 360(6393): 1105-1109. DOI: 10.1126/science.aas9768.
- Kim I, et al. Holographic metasurface gas sensors for instantaneous visual alarms. Sci Adv 2021; 7(15): eabe9943. DOI: 10.1126/sciadv.abe9943.
- Pahlevaninezhad H, et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat Photonics 2018; 12(9): 540-547. DOI: 10.1038/s41566-018-0224-2.
- Nalimov AG, Kotlyar VV. Multifocal metalens for detecting several topological charges at different wavelengths. Computer Optics 2023; 47(2): 201-207. DOI: 10.18287/2412-6179-CO-1170.
- Kotlyar VV, Nalimov AG, Stafeev SS, Hu C, O’Faolain L, Kotlyar MV, Gibson D, Song S. Thin high numerical aperture metalens. Opt Express 2017; 25(7): 8158-8167. DOI: 10.1364/OE.25.008158.
- Chen X, et al. Dual-polarity plasmonic metalens for visible light. Nat Commun 2012; 3: 1198. DOI: 10.1038/ncomms2207.
- Qiu X, Xie L, Qiu J, Zhang Z, Du J, Gao F. Diffraction-dependent spin splitting in spin Hall effect of light on reflection. Opt Express 2015; 23(15): 18823-18831. DOI: 10.1364/OE.23.018823.
- Huang L, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light Sci Appl 2013; 2: e70. DOI: 10.1038/lsa.2013.26.
- Xiao S, Zhong F, Liu H, Zhu S, Li J. Flexible coherent control of plasmonic spin-Hall effect. Nat Commun 2015; 6: 8360. DOI: 10.1038/ncomms9360.
- Puentes G, Takayama O, Sukham J, Malureanu R, Lavrinenko AV. First experimental observation of photonic spin Hall effect in hyperbolic metamaterials at visible wavelengths. 2019 Conf on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) 2019: 1-1. DOI: 10.1109/CLEOE-EQEC.2019.8872873.
- Yin X, Ye Z, Rho J, Wang Y, Zhang X. Photonic spin Hall effect at metasurfaces. Science 2013; 339(6126): 1405-1407. DOI: 10.1126/science.1231758.
- Kim M, Lee D, Yang Y. Reaching the highest efficiency of spin Hall effect of light in the near-infrared using all-dielectric metasurfaces. Nat Commun 2022; 13: 2036. DOI: 10.1038/s41467-022-29771-x.
- Kim M, Lee D, Ko B, Rho J. Diffraction-induced enhancement of optical spin Hall effect in a dielectric grating. APL Photonics 2020; 5: 066106. DOI: 10.1063/5.0009616.
- Zhang T, Wang H, Peng C, Chen Z. Linear-to-dual-circular polarization decomposition metasurface based on rotated trimming-stub-loaded circular patch. Crystals 2023; 13(5): 831. DOI: 10.3390/ cryst13050831.
- Li SJ, Han BW, Li ZY, Liu XB, Huang GS, Li RQ, Cao XY. Transmissive coding metasurface with dual-circularly polarized multi-beam. Opt Express 2022; 30(15): 26362-26376. DOI: 10.1364/OE.466036.
- Wang Z, Zhou D, Liu Q, Yan M, Wang X. Dual-mode vortex beam transmission metasurface antenna based on linear-to-circular polarization converter. Opt Express 2023; 31(22): 35632-35643. DOI: 10.1364/OE.497017.
- Nalimov AG, Kovalev AA. Spin Hall effect of linearly polarized light passed through a metasurface. Computer Optics 2024; 48(5): 662-668. DOI: 10.18287/2412-6179-CO-1500.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20